Mathematical Economics MME2/2 – 2017/2018 (lab)

1. A consumer has a utility function $u(x_1, x_2) = \left(x_1^{\frac{1}{2}} + x_2^{\frac{1}{2}}\right)^5$.

a) What are the Marshallian demand functions? (utility maximization)

b) What are the Hicksian demand functions? (expenditure minimization)

(1 point)

- 2. A firm has a production function given by $y = 5x_1^{\frac{1}{2}}x_2^{\frac{1}{3}}$.
- a) What are the factor demand functions?
- b) What are the conditional factor demand functions?

c) What is the cost function?

d) What is the supply function?

(1 point)

3. The production function has the form $y(x_1, x_2) = A((1-a)x_1^{\rho} + ax_2^{\rho})^{\frac{1}{\rho}}, \quad \rho \neq 0, \quad 0 < a < 1, A > 0$. Compute:

a) the technical rate of substitution $(TRS = \frac{dx_2}{dx_1} = -\frac{\partial y/\partial x_1}{\partial y/\partial x_2})$

b) the output elasticity of capital ($\varepsilon_1 = \frac{\partial y}{\partial x_1} \frac{x_1}{y} \equiv \frac{\partial \ln y}{\partial \ln x_1}$) and output elasticity of labour

$$(\varepsilon_2 = \frac{\partial y}{\partial x_2} \frac{x_2}{y}),$$

c) the elasticity of substitution ($\sigma = \frac{d(x_2/x_1)}{dTRS} \frac{TRS}{(x_2/x_1)} \equiv \frac{d\ln(x_2/x_1)}{d\ln(TRS)}$),

d) the elasticity of scale ($\varepsilon_t = \lim_{t \to 1} \frac{dy(tx_1, tx_2)}{dt} \frac{t}{y(tx_1, tx_2)}$),

e) $\lim_{a \to 0} y$.

(1 point)

4. Suppose that we have two firms that face linear demand curve $p = 200 - \frac{1}{2}(y_1 + y_2)$ and their cost functions are $c_1(y_1) = \frac{1}{2}y_1^2$, $c_2(y_2) = 10y_2$, respectively.

a) Compute the Cournot equilibrium amount of output for each firm and firms' profits.b) If firm 2 behaves as a follower and firm 1 behaves as a leader, compute the Stackelberg equilibrium amount of output for each firm and firms' profits.

(1 point)

5. The traders' utilities are given by $u^1(x_1, x_2) = x_1 x_2^2$ and $u^2(x_1, x_2) = x_1^{1/2} x_2^{1/2}$. Their initial endowments are the following $a^1 = (2, 2)$ and $a^2 = (4, 4)$. Traders come to a market and exchange commodities to maximize their utilities. Compute the price vector in equilibrium. Compare the utilities before and after the exchange.

(1 point)