Fundamentals of Financial Arithmetic Lecture 1-2

Dr Wioletta Nowak, room 205 C wioletta.nowak@uwr.edu.pl

http://prawo.uni.wroc.pl/user/12141/students-resources

Syllabus

Time value of money

- Percentage change. Interest rate. Simple interest, compound interest, compounding frequency, compounding agreement, continuously compounded interest, equation of value, future value, present value, discount factor, effective rate, average interest rate.

Syllabus

- Annuities. Present and future value of an annuity, annuity payment, annuity-immediate, annuity due, level payment annuity, non-level annuities, perpetuity.
- Loans. Principal, interest, payment amount, payment period. Long-term loan repayment methods. Equal principal payments. Equal total payments. Other loan repayment methods.

Syllabus

- Money market instruments: treasury bills and certificates of deposit. Pricing and quotation, rate of return, discount yield.
- Capital market instruments: treasury bonds and stocks.

Recommended Reading

- Kevin J. Hastings, Introduction to Financial Mathematics, CRC Press, 2015.

Percentage

- Convert percentage to decimal - divide percentage amount by 100

$$
20 \% \rightarrow \frac{20}{100}=0.2
$$

- Decimal to percentage - multiply decimal by 100
0.02 to \%

$$
0.02 \cdot 100 \%=2 \%
$$

- Percentage of a quantity
$\mathbf{1 3 \%}$ of 100 PLN

$$
0.13 \cdot 100 P L N=13 P L N
$$

Calculating the discount and the new price

- The price of an item is discounted, or marked down, by $r \% \quad(r \%$ decrease from x PLN)

$$
\text { discount }=\frac{r}{100} \cdot \text { original price }
$$

new price $=$ original price - discount discount $=$ original price - new price

Calculating the discount and the new price

- How much is saved if a 15% discount is offered on an item marked 20 PLN? What is the new discounted price of this item?

$$
0.15 \cdot 20 P L N=3 P L N
$$

$$
20 P L N-0.15 \cdot 20 P L N=17 P L N
$$

Calculating the increase and the new price

- The price of an item is increased, or marked up, by $r \% \quad(r \%$ increase from \times PLN $)$

$$
\begin{gathered}
\text { increase }=\frac{r}{100} \cdot \text { original price } \\
\text { new price }=\text { original price }+ \text { increase } \\
\text { increase }=\text { new price }- \text { original price }
\end{gathered}
$$

Calculating the increase and the new price

- How much is added if a 15% increase is applied to an item marked 20 PLN? What is the new increased price of this item?

$$
0.15 \cdot 20 P L N=3 P L N
$$

$$
20 P L N+0.15 \cdot 20 P L N=23 P L N
$$

One quantity expressed as a percentage of another quantity

- Express 15 PLN as a percentage of 200 PLN

$$
\frac{15}{200} \cdot 100 \%=0.075 \cdot 100 \%=7.5 \%
$$

- 7.5% of $200 \mathrm{PLN}=15 \mathrm{PLN}$

Calculating the percentage change

- Given the original price and the new price of an item, we can work out the percentage change. To do this, the amount of the decrease or increase is determined and then converted to a percentage of the original price.

$$
\begin{aligned}
& \text { percentage discount }=\frac{\text { discount }}{\text { original price }} \cdot 100 \% \\
& \text { percentage increase }=\frac{\text { increase }}{\text { original price }} \cdot 100 \%
\end{aligned}
$$

Calculating the percentage change

- If the price of an item is reduced from 200 PLN to 160 PLN, what percentage discount has been applied?

200-160

$$
\cdot 100 \%=0.2 \cdot 100 \%=20 \%
$$

200

- If the price of an item is increased from 200 PLN to 260 PLN, what percentage increase has been applied?

260-200

$$
\cdot 100 \%=0.3 \cdot 100 \%=30 \%
$$

Calculating the original price

- When a $r \%$ discount has been applied

$$
\text { original price }=\frac{100}{100-r} \cdot \text { new price }
$$

- When a $r \%$ increase has been applied

$$
\text { original price }=\frac{100}{100+r} \cdot \text { new price }
$$

Calculating the original price

- Find the original price of the item that has been:
a. marked down by 10%, now priced 90 PLN

$$
\text { original price }=\frac{100}{100-10} \cdot 90=100
$$

b. marked up by 10%, now priced 90 PLN

$$
\text { original price }=\frac{100}{100+10} \cdot 90=81.82
$$

Calculating the new price

- When a $r \%$ discount has been applied

$$
\text { new price }=\frac{100-r}{100} \cdot \text { original price }
$$

- When a $r \%$ increase has been applied

$$
\text { new price }=\frac{100+r}{100} \cdot \text { original price }
$$

Exercise 1

1. Calculate the amount of the discount
a) 14% discount on 98 PLN
b) 1.5% discount on 400 PLN
2. Calculate the amount of the increase
a) 0.3% increase on 10000 PLN
b) 5% increase on 2 PLN
3. Calculate the following as percentages
a) 18.45 PLN of 150 PLN
b) 0.2 PLN of 4 PLN

Exercise 1

4. Calculate the new discounted prices for each of the following
a) 164 PLN discounted by 4.5% b) 20000 PLN discounted by 43%
5. Calculate the new increased prices for each of the following
a) 2.5 PLN marked up by 30%,
b) 1000 PLN marked up by 2.5%

Exercise 1

6. Find the original price of the item that has been:
a. marked down by 5%, now priced 80 PLN, b. marked down by 15%, now priced 50 PLN, c. marked up by 5%, now priced 80 PLN, d. marked up by 15%, now priced 50 PLN.

- Principle - original amount invested or borrowed
- Interest - the amount of interest earned
- Rate - percentage rate of interest to be earned per annum
- Term - duration of loan/investment in years
- Amount
- Number of compounding periods
- Compounding - determining the future value by the use of compounding interest, that is, interest on interest, period by period.
- The frequency of compounding: annual, semi-annual, monthly, daily, continuous
- Continuous compounding is a term used when taking the limit of the interest rate as the period of time compounding approaches to 0 .

Simple interest

$$
\begin{aligned}
& \mathrm{K}_{1}=\mathrm{K}_{0}+\mathrm{r} \mathrm{~K}_{0}=(1+\mathrm{r}) \mathrm{K}_{0} \\
& \mathrm{~K}_{2}=\mathrm{K}_{1}+\mathrm{rK} \mathrm{~K}_{0}=(1+2 \mathrm{r}) \mathrm{K}_{0} \\
& \mathrm{~K}_{\mathrm{n}}=(1+\mathrm{n} \cdot \mathrm{r}) \mathrm{K}_{0} \\
& \mathrm{r}=\frac{\mathrm{K}_{\mathrm{n}}-\mathrm{K}_{0}}{\mathrm{n} \cdot \mathrm{~K}_{0}} \\
& \mathrm{n}=\frac{\mathrm{K}_{\mathrm{n}}-\mathrm{K}_{0}}{\mathrm{r} \cdot \mathrm{~K}_{0}}
\end{aligned}
$$

Simple interest

Compound interest

$$
\begin{aligned}
& \mathrm{K}_{1}=\mathrm{K}_{\mathrm{o}}+\mathrm{r} \mathbf{K}_{\mathrm{o}}=\mathrm{K}_{\mathrm{o}} \cdot(1+\mathrm{r}) \\
& \mathrm{K}_{2}=\mathrm{K}_{1}+\mathrm{r} \mathrm{~K}_{1}=\mathrm{K}_{\mathrm{o}} \cdot(1+\mathrm{r})^{2} \\
& \mathrm{~K}_{\mathrm{n}}=\mathrm{K}_{\mathrm{o}} \cdot(1+\mathrm{r})^{\mathrm{n}} \\
& \mathrm{r}=\sqrt[n]{\frac{\mathrm{K}_{\mathrm{n}}}{\mathbf{K}_{\mathrm{o}}}}-1 \\
& \mathrm{n}=\frac{\ln \left(\mathrm{K}_{\mathrm{n}} / \mathrm{K}_{\mathrm{o}}\right)}{\ln (1+\mathbf{r})}
\end{aligned}
$$

Compound interest

Compound interest (the beginning of the period)

$$
\begin{aligned}
& \mathbf{K}_{1}=\mathbf{K}_{\mathrm{o}}+\mathbf{K}_{\mathrm{o}} \cdot \mathbf{r}+\mathbf{K}_{\mathrm{o}} \cdot \mathbf{r}^{2}+\ldots \\
& \mathbf{K}_{1}=\mathbf{K}_{\mathrm{o}}\left(\mathbf{1}+\mathbf{r}+\mathbf{r}^{2}+\ldots\right) \\
& \mathbf{K}_{1}=\mathbf{K}_{\mathrm{o}} \cdot(\mathbf{1}-\mathbf{r})^{-1} \quad|\mathbf{r}|<\mathbf{1} \\
& \mathbf{K}_{2}=\mathbf{K}_{1} \cdot(\mathbf{1}-\mathbf{r})^{-1}=\mathbf{K}_{\mathrm{o}} \cdot(\mathbf{1}-\mathbf{r})^{-2} \\
& \mathbf{K}_{\mathbf{n}}=\mathbf{K}_{\mathrm{o}} \cdot(\mathbf{1}-\mathbf{r})^{-\mathbf{n}} \\
& \mathbf{r}=\mathbf{1}-\sqrt[n]{\frac{\mathbf{K}_{\mathrm{O}}}{\mathbf{K}_{\mathbf{n}}}} \\
& \mathbf{n}=\frac{\ln \left(\mathbf{K}_{\mathrm{o}} / \mathbf{K}_{\mathbf{n}}\right)}{\ln (\mathbf{1}-\mathbf{r})}
\end{aligned}
$$

Compound interest

 (the beginning of the period)

Continuously compounded interest

$$
\begin{aligned}
& K_{n}=K_{o} \cdot e^{n \cdot r} \\
& \lim _{m \rightarrow \infty} K_{o} \cdot\left(1+\frac{r}{m}\right)^{n \cdot m}=K_{o} \cdot e^{n \cdot r} \\
& \lim _{m \rightarrow \infty} K_{o} \cdot\left(1-\frac{r}{m}\right)^{-n \cdot m}=K_{o} \cdot e^{n \cdot r} \\
& \mathbf{r}=\frac{\ln \left(K_{n} / K_{o}\right)}{n} \\
& n=\frac{\ln \left(K_{n} / K_{o}\right)}{r}
\end{aligned}
$$

Continuously compounded interest

Simple interest - examples

- How much interest is earned if 1000 PLN is invested at 4% per annum simple interest for 5 years?

$$
I=1000 \cdot 0.04 \cdot 5=200
$$

- Find the total amount owed on a loan of 20000 PLN at 5\% per annum simple interest at the end of 2 years.

$$
K_{2}=20000(1+2 \cdot 0.05)=22000
$$

Simple interest - examples

- A sum of 5000 PLN was invested at a simple interest rate for 2 years. The total value of investment at the end of the 2 years is 10000 PLN. Find the quarterly interest rate.

$$
K_{8}=K_{0}(1+8 \cdot r) \quad \frac{10}{5}-1=8 r \quad r=12.5 \%
$$

- Find the simple interest rate if a principal increases seven times in 10 years.

$$
7 K_{0}=K_{0}(1+10 \cdot r) \quad r=60 \%
$$

Compound interest - examples

- Determine the amount of money accumulated after 3 years if 6000 PLN is invested at an interest rate of 5% per annum, compounded monthly. Determine the amount of interest earned.

$$
\begin{aligned}
K_{3} & =6000\left(1+\frac{0.05}{12}\right)^{36}=6968.83 \\
I & =6968.83-6000
\end{aligned}=968.83
$$

Compound interest - examples

- How much money should be invested at 8% per annum compound interest, compounding quarterly if 10000 PLN is needed in 4 years time?

$$
K_{0}=\frac{10000}{\left(1+\frac{0.08}{4}\right)^{16}}=7284.46
$$

Compound interest - examples

- How many months does it take for 4000 PLN to accumulate to 10000 PLN under 9% p.a. compound interest (continuously compounded interest)?

$$
\begin{array}{rlrl}
10000 & =4000\left(1+\frac{0.09}{12}\right)^{n} & 10000 & =4000 e^{n \frac{0.09}{12}} \\
\ln (2.5) & =n \cdot \ln (1.0075) & \ln (2.5) & =n \cdot 0.0075 \\
n & =122.63 & n & =122.17
\end{array}
$$

Continuously compounded interest - example

- Determine the amount of money accumulated after 3 years if 6000 PLN is invested at an interest rate of 5% per annum, continuously compounded interest. Determine the amount of interest earned.

$$
\begin{gathered}
K_{3}=6000 e^{3.0 .05}=6971.01 \\
I=971.01
\end{gathered}
$$

Simple and compound interest - examples

- Suppose that a capital of 400 PLN earns 150 PLN of interest in 6 years. What was the interest rate if compound interest is used? What if simple interest is used?

$$
\begin{array}{ll}
550=400(1+r)^{6} & r=5.451 \% \\
550=400(1+6 r) & r=6.25 \%
\end{array}
$$

Simple and compound interest - examples

- A bank offers various investment possibilities to a customer wishing to invest 25000 PLN for 10 years. Calculate the final amount for each of the following
a. Simple interest rate at 15% per annum,
b. Compound interest at 11% per annum, calculated annually,
c. Compound interest at 10.5% per annum, calculated semiannually,
d. Compound interest at 10% per annum, calculated quarterly,
e. Compound interest at 9.5% per annum, calculated monthly,
f. Compound interest at 9% per annum, calculated daily.

Which investment would you recommend?

Simple and compound interest - examples

- A bank offers various investment possibilities to a customer wishing to invest 25000 PLN for 10 years. Calculate the final amount for each of the following
a. Simple interest rate at 15% per annum, (62500 PLN)
b. Compound interest at 11% per annum, calculated annually, (70 985.52 PLN)
c. Compound interest at 10.5% per annum, calculated semi-annually, (69 563.61 PLN)
d. Compound interest at 10% per annum, calculated quarterly, (67 126.6 PLN)
e. Compound interest at 9.5% per annum, calculated monthly, (64 401.38 PLN)
f. Compound interest at 9\% per annum, calculated daily (365). (61 483.26 PLN)

Which investment would you recommend?

Discounting

- The discount factor is the amount of money one needs to invest to get one unit of capital after one time unit.
- Simple discounting
- Compound discounting

Discounting - example

- What is a present value of 10000 PLN due in a month (a quarter) assuming 9% p.a. simple discount?

$$
\begin{aligned}
& 10000 \cdot\left(1-\frac{0.09}{12}\right)=992.5 \\
& 10000 \cdot\left(1-\frac{0.09}{4}\right)=977.5
\end{aligned}
$$

The frequency of compounding

- The stated interest rate can deviate significantly from the true interest rate.
- Effective interest rate
- Example a 20% annual interest rate

$$
r_{e f}=\left(1+\frac{r}{m}\right)^{m}-1
$$

Frequency	Effective annual rate	\mathbf{m}
Annual	20%	1
Semi-Annual	21.0000%	2
Quarterly	21.5506%	4
Monthly	21.9391%	12
Daily	$22.1335 \% \quad 22.1336 \%$	$360 / 365$
Continuous	22.1403%	

$$
r_{e f}=e^{r}-1
$$

Compounding agreement

	Compounding annually	Compounding semi-annually	Compounding quarterly	Compounding monthly
Annual rate	r	$r_{e f}=\left(1+\frac{r}{2}\right)^{2}-1$	$r_{e f}=\left(1+\frac{r}{4}\right)^{4}-1$	$r_{e f}=\left(1+\frac{r}{12}\right)^{12}-1$
Semi-annual rate	$r_{e f}=(1+r)^{1 / 2}-1$	$r / 2$	$r_{e f}=\left(1+\frac{r}{4}\right)^{2}-1$	$r_{e f}=\left(1+\frac{r}{12}\right)^{6}-1$
Quarterly rate	$r_{e f}=(1+r)^{1 / 4}-1$	$r_{e f}=\left(1+\frac{r}{2}\right)^{1 / 2}-1$	$r / 4$	$r_{e f}=\left(1+\frac{r}{12}\right)^{3}-1$
Monthly rate	$r_{e f}=(1+r)^{1 / 12}-1$	$r_{e f}=\left(1+\frac{r}{2}\right)^{1 / 6}-1$	$r_{e f}=\left(1+\frac{r}{4}\right)^{1 / 3}-1$	$r / 12$

Average interest rate

$$
\begin{gathered}
K_{n}=K_{0}\left(1+n_{1} r_{1}+n_{2} r_{2}+\cdots+n_{p} r_{p}\right) \quad n=n_{1}+n_{2}+\cdots+n_{p} \\
r_{a v}=\left(n_{1} r_{1}+n_{2} r_{2}+\cdots+n_{p} r_{p}\right) / n \\
K_{n}=K_{0}\left(1+r_{1}\right)^{n_{1}}\left(1+r_{2}\right)^{n_{2}} \cdots\left(1+r_{p}\right)^{n_{p}} \quad n=n_{1}+n_{2}+\cdots+n_{p} \\
r_{a v}=\sqrt[n]{\left(1+r_{1}\right)^{n_{1}}\left(1+r_{2}\right)^{n_{2}} \cdots\left(1+r_{p}\right)^{n_{p}}}-1
\end{gathered}
$$

Average interest rate

$$
\begin{gathered}
K_{n}=K_{0}\left(1-r_{1}\right)^{-n_{1}}\left(1-r_{2}\right)^{-n_{2}} \cdots\left(1-r_{p}\right)^{-n_{p}} \quad n=n_{1}+n_{2}+\cdots+n_{p} \\
r_{a v}=1-\sqrt[n]{\left(1-r_{1}\right)^{n_{1}}\left(1-r_{2}\right)^{n_{2}} \cdots\left(1-r_{p}\right)^{n_{p}}} \\
K_{n}=K_{0} e^{n_{1} r_{1}} e^{n_{2} r_{2}} \cdots e^{n_{p} r_{p}}=K_{0} e^{n_{1}+n_{2} r_{2}+\cdots+n_{p} r_{p}} \quad n=n_{1}+n_{2}+\cdots+n_{p} \\
r_{a v}=\left(n_{1} r_{1}+n_{2} r_{2}+\cdots+n_{p} r_{p}\right) / n
\end{gathered}
$$

Example

A company borrowed money from four banks:

- Bank A 1000 PLN, 2 months, simple interest at 18% per annum,
- Bank B 1200 PLN, 4 months, simple interest at 20% per annum,
- Bank C 1100 PLN, 3 months, simple interest at 19% per annum,
- Bank D 1300 PLN , 5 months, simple interest at 21% per annum.

Does the company benefit more if interest rate is the same in all banks and amounts 19.5\% p.a.

$$
\begin{gathered}
K_{n}=1000\left(1+2 \cdot \frac{0.18}{12}\right)+1200\left(1+4 \cdot \frac{0.2}{12}\right)+1100\left(1+3 \cdot \frac{0.19}{12}\right)+1300\left(1+5 \cdot \frac{0.21}{12}\right) \\
K_{n}=1000\left(1+2 \cdot \frac{r_{a v}}{12}\right)+1200\left(1+4 \cdot \frac{r_{a v}}{12}\right)+1100\left(1+3 \cdot \frac{r_{a v}}{12}\right)+1300\left(1+5 \cdot \frac{r_{a v}}{12}\right) \\
r_{a v}=19.95 \%>19.5 \%
\end{gathered}
$$

