Fundamentals of Financial Arithemtic Lecture 3

Dr Wioletta Nowak

- An annuity is a series of equal payments at regular intervals (deposits to a savings account, home mortgage payments).
- Payment period - interval between annuity payments.
- Term - the fixed period of time for which payments are made.
- Payment periods and compounding periods.
- Annuity-immediate - payments are made at the end of payments period.
- Annuity due - payments are made at the beginning of payment periods.

Annuity - simple interest

Annuity-immediate

$$
K_{n}=E_{1}+E_{2}+\cdots+E_{n}+E_{1}(n-1) r+E_{2}(n-2) r+\cdots+E_{n-1} r
$$

Annuity due

$$
K_{n}=E_{1}+E_{2}+\cdots+E_{n}+E_{1} n \cdot r+E_{2}(n-1) r+\cdots+E_{n} r
$$

Annuity - simple interest

level payment annuity \mathbf{E}

Annuity-immediate

Annuity due

Future value

$$
\begin{gathered}
K_{n}=E \cdot n \cdot\left(1+\frac{n-1}{2} r\right)_{\text {Present value }} K_{n}=E \cdot n \cdot\left(1+\frac{n+1}{2} r\right) \\
K_{0}=E \cdot n \cdot\left(1+\frac{n \pm 1}{2} r\right) \frac{1}{1+n \cdot r} \\
K_{t}=E \cdot n \cdot\left(1+\frac{n \pm 1}{2} r\right) \frac{1+t \cdot r}{1+n \cdot r} \quad t \in(0, n)
\end{gathered}
$$

Annuity - compound interest

$$
\begin{gathered}
\bullet \\
\bullet \\
\bullet \\
0
\end{gathered} E_{1}
$$

Annuity - compound interest level payment annuity \mathbf{E}

Annuity-immediate

Annuity due

Future value

$$
K_{n}=E \cdot \frac{(1+r)^{n}-1}{r} K_{\text {Present value }}=E \cdot(1+r) \frac{(1+r)^{n}-1}{r}
$$

$$
\begin{gathered}
K_{0}=\frac{K_{n}}{(1+r)^{n}} \\
K_{t}=\frac{K_{n}}{(1+r)^{n-t}} \quad t \in(0, n)
\end{gathered}
$$

Annuity - continuously compounded interest

Annuity-immediate

$$
K_{n}=E_{1} \cdot e^{(n-1) r}+E_{2} \cdot e^{(n-2) r}+\cdots+E_{n-1} \cdot e^{r}+E_{n}
$$

Annuity due

$$
K_{n}=E_{1} \cdot e^{n \cdot r}+E_{2} \cdot e^{(n-1) r}+\cdots+E_{n} \cdot e^{r}
$$

Annuity - continuously compounded interest level payment annuity \mathbf{E}

Annuity-immediate

$$
\begin{array}{cl}
K_{n}=E \cdot \frac{e^{n \cdot r}-1}{e^{r}-1} & K_{n}=E \cdot e^{r} \cdot \frac{e^{n \cdot r}-1}{e^{r}-1} \\
K_{t}=K_{n} \cdot e^{-(n-t) \cdot r} & t \in(0, n) \\
K_{0}=E \cdot \frac{1-e^{-n \cdot r}}{e^{r}-1} & K_{0}=E \cdot e^{r} \cdot \frac{1-e^{-n \cdot r}}{e^{r}-1}
\end{array}
$$

Example 1 - Annuity-immediate

- Calculate the present value of an annuity-immediate of amount 100 PLN paid monthly for a year at the rate of simple interest of 9% per annum. Also calculate its future value at time 1 year.

$$
P V=E \cdot n \cdot\left(1+\frac{n-1}{2} r\right) \frac{1}{1+n \cdot r} \quad F V=E \cdot n \cdot\left(1+\frac{n-1}{2} r\right)
$$

Example 1- Annuity-immediate

- Calculate the present value of an annuity-immediate of amount 100 PLN paid monthly for a year at the rate of simple interest of 9% per annum. Also calculate its future value at time 1 year.

$$
\begin{gathered}
P V=E \cdot n \cdot\left(1+\frac{n-1}{2} r\right) \frac{1}{1+n \cdot r} \quad F V=E \cdot n \cdot\left(1+\frac{n-1}{2} r\right) \\
P V=100 \cdot 12 \cdot\left(1+\frac{12-1}{2} \cdot \frac{0.09}{12}\right) \frac{1}{1+0.09}=1146.33 \\
F V=100 \cdot 12 \cdot\left(1+\frac{12-1}{2} \cdot 0.0075\right)=1249.5
\end{gathered}
$$

Example 2a - Annuity-immediate - future value Compound interest

- Find the accumulated value of a 10-year annuity-immediate of 100 PLN per year if the effective rate of interest is 6% for the first 6 years and 4% for the last 4 years.

$$
K_{n}=E \cdot \frac{(1+r)^{n}-1}{r}
$$

$100 \cdot \frac{(1+0.06)^{6}-1}{0.06}(1.04)^{4}+100 \cdot \frac{(1+0.04)^{4}-1}{0.04}=1240.66$

Example 2b - Annuity-immediate - future value Compound interest

- Rework example above if the first 6 payments are invested at an effective rate of interest 6% and if the final 4 payments are invested at 4%.

$$
\begin{array}{r}
K_{n}=E \cdot \frac{(1+r)^{n}-1}{r} \\
100 \cdot \frac{(1+0.06)^{6}-1}{0.06}(1.06)^{4}+100 \cdot \frac{(1+0.04)^{4}-1}{0.04}=1305.26
\end{array}
$$

Example 3 - Annuity-immediate - present value

- Find the present value of an annuity which pays 500 PLN at end of each half-year for 10 years if the rate of interest is 9% convertible semiannually.

$$
P V \equiv K_{0}=E \cdot \frac{1-(1+r)^{-n}}{r}
$$

$$
P V=500 \cdot \frac{1-(1+0.045)^{-20}}{0.045}=6503.97
$$

Example 4 - Annuity-immediate

- Determine the present value of receiving 1000 PLN per year for the next 7 years if it is continuously discounted at 6%.

$$
\begin{aligned}
P V & =E \cdot \frac{1-e^{-n \cdot r}}{e^{r}-1} \\
P V & =1000 \cdot \frac{1-e^{-7 \cdot 0.06}}{e^{0.06}}-1
\end{aligned}=5546.124
$$

Example 5

- Find the accumulated value at end of 6 years of investment fund in which 100 PLN is deposited at the beginning of each month and 200 PLN is deposited at the end of each half-year, if the rate of interest is 12% convertible quarterly.

$$
F V=E \cdot(1+r) \frac{(1+r)^{n}-1}{r} \quad F V=E \cdot \frac{(1+r)^{n}-1}{r}
$$

Example 5

- Find the accumulated value at end of 6 years of investment fund in which 100 PLN is deposited at the beginning of each month and 200 PLN is deposited at the end of each half-year, if the rate of interest is 12% convertible quarterly.

$$
\begin{aligned}
r & =\left(1+\frac{0.12}{4}\right)^{\frac{1}{3}}-1=0.0099 \quad r=\left(1+\frac{0.12}{4}\right)^{2}-1=0.0609 \\
F V & =100 \cdot 1.0099 \cdot \frac{(1.0099)^{72}-1}{0.0099} \quad F V=200 \cdot \frac{(1.0609)^{12}-1}{0.0609}
\end{aligned}
$$

$$
10533.82+3391.77=13925.59
$$

Example 6a - term of annuity due is not an integer

$$
\begin{gathered}
E=10 \quad K_{n}=100 \\
K_{n}=E \cdot(1+r) \frac{(1+r)^{n}-1}{r} \\
n=\frac{\ln \left(\frac{r \cdot K_{n}}{E \cdot(1+r)}+1\right)}{\ln (1+r)}=\frac{\ln \left(\frac{0.12 \cdot 100}{10 \cdot 1.12}+1\right)}{\ln (1.12)} \\
n=6.43
\end{gathered}
$$

Additional payment

$$
\begin{gathered}
K_{6}=90.89 \\
x=9
\end{gathered} K_{6}
$$

Enlargement of one of the payment

	10	10		$10+\mathrm{x}$
\bullet	\bullet	\bullet	\bullet	$K_{6}+x \cdot(1+r)=100$
	1	2	6	$x=8.13$
			10	
	10	$10+\mathrm{x}$	\bullet	$K_{6}+x \cdot(1+r)^{5}=100$
\bullet	\bullet	\bullet	6	$x=5.17$

New payments

$$
\begin{aligned}
& E=\frac{r \cdot K_{n}}{(1+r)\left((1+r)^{n}-1\right)} \\
& n=6 \quad E=11.00
\end{aligned}
$$

Example 6b - term of annuity-immediate is not an

 integer$$
\begin{array}{cc}
E=10 & K_{n}=100 \quad r=12 \% \\
K_{n}=E \cdot \frac{(1+r)^{n}-1}{r} \\
n=6.96 & n=\frac{\ln \left(\frac{r \cdot K_{n}}{E}+1\right)}{\ln (1+r)}
\end{array}
$$

Additional payment

$$
\begin{array}{cccc}
& 10 & 10 & 10 \\
\bullet & \bullet & \bullet & \bullet \\
0 & 1 & 2 & 6 \\
K_{6} \cdot(1+r)+x=100 & K_{n}=E \cdot \frac{(1+r)^{n}-1}{r} \\
x=9.11 & K_{6}=81.15
\end{array}
$$

Enlargement of one of the payment

	10	10	$10+\mathrm{x}$	
\bullet	\bullet	\bullet	\bullet	$K_{6}+x=100$
0	1	2	6	$x=18.85$
			10	
	10	$10+\mathrm{x}$	\bullet	$K_{6}+x \cdot(1+r)^{4}=100$
\bullet	\bullet	\bullet	6	$x=11.98$
0	1	2		

New payments

$$
E=\frac{r \cdot K_{n}}{(1+r)^{n}-1}
$$

$$
n=7 \quad E=9.91
$$

Example 6c - term of annuity due is not an integer, simple interest

$$
\begin{array}{cc}
E=10 & K_{n}=100 \\
K_{n}=E \cdot n \cdot\left(1+\frac{n+1}{2} r\right) \\
100=10 \cdot n \cdot\left(1+\frac{n+1}{2} \cdot 0.12\right) \\
3 \cdot n^{2}+53 \cdot n-500=0
\end{array}
$$

$$
n=6.81
$$

Additional payment

$$
\begin{aligned}
& 10 \quad 10 \\
& 10 \mathrm{x} \\
& 0 \quad 1 \quad 2 \\
& 6 \\
& 7 \\
& K_{6}=10 \cdot 6 \cdot\left(1+\frac{6+1}{2} \cdot 0.12\right)=85.2 \\
& K_{6}+x=100 \\
& x=14.8 \\
& \left(K_{6}+x\right) \cdot(1+r)=100 \quad x=4.09
\end{aligned}
$$

Enlargement of one of the payment

New payments

$$
E=\frac{K_{n}}{n \cdot\left(1+\frac{n+1}{2} r\right)}
$$

$$
n=7 \quad E=9.65
$$

