Fundamentals of Financial Arithmetic Lecture 5

Dr Wioletta Nowak

- Long-term loans - repayment methods
- Equal principal payments per time period
- Equal total payments per time period
- Loan amount - the size or value of the loan
- Interest rate - the annual stated rate of the loan
- Number of payments - the total numbers of payments to pay off the given loan amount
- Payment frequency - loans payments are due monthly (quarterly, annually).
- Compounding coincides with payments (Compounding doesn't coincide with payments)
- Loan payment $=$ principal payment + interest payment
- The amortization schedule shows - for each payment - how much of the payment goes toward the loan principal, and how much is paid on interest.

Example 1 - Loan Amortization Schedule

- An investor borrowed 100 PLN. The loan was for four quarters at 20% annual interest (compounding quarterly).

$$
S=100 \quad N=4 \quad r=\frac{0.2}{4}=0.05
$$

Loan amortization schedule - equal principal payments

 (interest payment as a percent of the previous principal balance)| n | S_{n-1} | T_{n} | Z_{n} | A_{n} | S_{n} |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | 100 | 25 | 5 | 30 | 75 |
| 2 | 75 | 25 | 3.75 | 28.75 | 50 |
| 3 | 50 | 25 | 2.5 | 27.5 | 25 |
| 4 | 25 | 25 | 1.25 | 26.25 | 0 |
| Total | | $\mathbf{1 0 0}$ | $\mathbf{1 2 . 5}$ | $\mathbf{1 1 2 . 5}$ | |

Previous	Principal	Interest	Total	Principal
principal	payment	payment	payment	balance
balance				

Loan amortization schedule - equal principal payments

 (interest payment as a percent of the repaid loan)| n | S_{n-1} | T_{n} | Z_{n} | A_{n} | S_{n} |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | 100 | 25 | 1.25 | 26.25 | 75 |
| 2 | 75 | 25 | 2.5 | 27.5 | 50 |
| 3 | 50 | 25 | 3.75 | 28.75 | 25 |
| 4 | 25 | 25 | 5 | 30 | 0 |
| Total | | $\mathbf{1 0 0}$ | $\mathbf{1 2 . 5}$ | $\mathbf{1 1 2 . 5}$ | |

Previous	Principal	Interest	Total	Principal
principal	payment	payment	payment	balance
balance				

Loan amortization schedule - given principal payments (interest payment as a percent of the previous principal balance)

n	S_{n-1}	T_{n}	Z_{n}	A_{n}	S_{n}
1	100	10	5	15	90
2	90	20	4.5	24.5	70
3	70	20	3.5	23.5	50
4	50	50	2.5	52.5	0
Total		$\mathbf{1 0 0}$	$\mathbf{1 5 . 5}$	$\mathbf{1 1 5 . 5}$	

Previous	Principal	Interest	Total	Principal
principal	payment	payment	payment	balance
balance				

Loan amortization schedule

n	S_{n-1}	T_{n}	Z_{n}	A_{n}	S_{n}
1	100	0	5	5	100
2	100	0	5	5	100
3	100	0	5	5	100
4	100	100	5	105	0
Total		$\mathbf{1 0 0}$	$\mathbf{2 0}$	$\mathbf{1 2 0}$	

Previous	Principal	Interest	Total	Principal
principal	payment	payment	payment	balance
balance				

Equal total payments

$$
\begin{aligned}
& S(1+r)^{N}=A_{1}(1+r)^{N-1}+A_{2}(1+r)^{N-2}+\cdots+A_{N} \\
& S=\frac{A_{1}}{1+r}+\frac{A_{2}}{(1+r)^{2}}+\cdots+\frac{A_{N}}{(1+r)^{N}}
\end{aligned}
$$

Periodic payment

$$
S(1+r)^{N}=A \frac{(1+r)^{N}-1}{r} \quad A=\frac{S \cdot r \cdot(1+r)^{N}}{(1+r)^{N}-1}
$$

Equal total payments

$$
Z_{n}=r \cdot S_{n-1} \quad T_{n}=S_{n-1}-S_{n} \quad A_{n}=T_{n}+Z_{n}
$$

$$
\begin{gathered}
S_{n}=S(1+r)^{n}-\left(A_{1}(1+r)^{n-1}+A_{2}(1+r)^{n-2}+\cdots+A_{n-1}(1+r)\right)-A_{n} \\
S_{n}=(1+r)\left(S(1+r)^{n-1}-\left(A_{1}(1+r)^{n-2}+A_{2}(1+r)^{n-3}+\cdots+A_{n-1}\right)\right)-A_{n} \\
S_{n}=(1+r) S_{n-1}-A_{n}
\end{gathered}
$$

Loan amortization schedule - equal total payments

 (interest payment as a percent of the previous principal balance)| n | S_{n-1} | T_{n} | Z_{n} | A_{n} | S_{n} |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | 100 | 23.2 | 5 | 28.2 | 76.8 |
| 2 | 76.8 | 24.36 | 3.84 | 28.2 | 52.44 |
| 3 | 52.44 | 25.58 | 2.62 | 28.2 | 26.86 |
| 4 | 26.86 | 26.86 | 1.34 | 28.2 | 0 |
| Total | | $\mathbf{1 0 0}$ | $\mathbf{1 2 . 8}$ | $\mathbf{1 1 2 . 8}$ | |

Previous	Principal	Interest	Total	Principal
principal balance	payment	payment	payment	balance

Loan amortization schedule - given total payments

 (interest payment as a percent of the previous principal balance)| n | S_{n-1} | T_{n} | Z_{n} | A_{n} | S_{n} |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | 100 | 15 | 5 | 20 | 85 |
| 2 | 85 | 25.75 | 4.25 | 30 | 59.25 |
| 3 | 59.25 | 37.04 | 2.96 | 40 | 22.21 |
| 4 | 22.21 | 22.21 | 1.11 | 23.32 | 0 |
| Total | | $\mathbf{1 0 0}$ | $\mathbf{1 3 . 3 2}$ | $\mathbf{1 1 3 . 3 2}$ | |

$\begin{array}{lllll}\text { Previous } & \text { Principal } & \text { Interest } & \text { Total } & \text { Principal } \\ \text { principal } & \text { payment } & \text { payment } & \text { payment } & \text { balance } \\ \text { balance } & & & & \end{array}$

$$
S(1+r)^{4}=A_{1}(1+r)^{3}+A_{2}(1+r)^{2}+A_{3}(1+r)+A_{4}
$$

Equal total payments

(continuously compounded interest)

$$
S e^{r \cdot N}=A_{1} e^{r(N-1)}+A_{2} e^{r(N-2)}+\cdots+A_{N}
$$

$$
S e^{r \cdot N}=A \frac{e^{r \cdot N}-1}{e^{r}-1} \quad A=S \cdot e^{r \cdot N} \cdot \frac{e^{r}-1}{e^{r \cdot N}-1}
$$

$$
Z_{n}=S_{n-1} \cdot\left(e^{r}-1\right) \quad T_{n}=S_{n-1}-S_{n} \quad A_{n}=T_{n}+Z_{n}
$$

Loan amortization schedule - equal total payments

 (continuously compounded interest)| n | S_{n-1} | T_{n} | Z_{n} | A_{n} | S_{n} |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | 100 | 23.16 | 5.13 | 28.28 | 76.84 |
| 2 | 76.84 | 24.34 | 3.94 | 28.28 | 52.5 |
| 3 | 52.5 | 25.59 | 2.69 | 28.28 | 26.91 |
| 4 | 26.91 | 26.91 | 1.38 | 28.28 | 0 |
| Total | | $\mathbf{1 0 0}$ | $\mathbf{1 3 . 1 4}$ | $\mathbf{1 1 3 . 1 4}$ | |

Previous	Principal	Interest	Total	Principal
principal				
balance	payment	payment	payment	balance

