Fundamentals of Financial Arithmetic Lecture 5

Dr Wioletta Nowak

- Long-term loans - repayment methods
- Equal principal payments per time period
- Equal total payments per time period
- Loan amount - the size or value of the loan
- Interest rate - the annual stated rate of the loan
- Number of payments - the total numbers of payments to pay off the given loan amount
- Payment frequency - loans payments are due monthly (quarterly, annually).
- Compounding coincides with payments (Compounding doesn't coincide with payments)
- Loan payment $=$ principal payment + interest payment
- The amortization schedule shows - for each payment - how much of the payment goes toward the loan principal, and how much is paid on interest.

Example 1 - Loan Amortization Schedule

- An investor borrowed 100 PLN. The loan was for four quarters at 20% annual interest (compounding quarterly).

$$
S=100 \quad N=4 \quad r=\frac{0.2}{4}=0.05
$$

Loan amortization schedule - equal principal payments

 (interest payment as a percent of the previous principal balance)| n | S_{n-1} | T_{n} | Z_{n} | A_{n} | S_{n} |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | 100 | 25 | 5 | 30 | 75 |
| 2 | 75 | 25 | 3.75 | 28.75 | 50 |
| 3 | 50 | 25 | 2.5 | 27.5 | 25 |
| 4 | 25 | 25 | 1.25 | 26.25 | 0 |
| Total | | $\mathbf{1 0 0}$ | $\mathbf{1 2 . 5}$ | $\mathbf{1 1 2 . 5}$ | |

Previous	Principal	Interest	Total	Principal
principal	payment	payment	payment	balance
balance				

Loan amortization schedule - equal principal payments

 (interest payment as a percent of the repaid loan)| n | S_{n-1} | T_{n} | Z_{n} | A_{n} | S_{n} |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | 100 | 25 | 1.25 | 26.25 | 75 |
| 2 | 75 | 25 | 2.5 | 27.5 | 50 |
| 3 | 50 | 25 | 3.75 | 28.75 | 25 |
| 4 | 25 | 25 | 5 | 30 | 0 |
| Total | | $\mathbf{1 0 0}$ | $\mathbf{1 2 . 5}$ | $\mathbf{1 1 2 . 5}$ | |

Previous	Principal	Interest	Total	Principal
principal	payment	payment	payment	balance
balance				

Loan amortization schedule - given principal payments (interest payment as a percent of the previous principal balance)

n	S_{n-1}	T_{n}	Z_{n}	A_{n}	S_{n}
1	100	10	5	15	90
2	90	20	4.5	24.5	70
3	70	20	3.5	23.5	50
4	50	50	2.5	52.5	0
Total		$\mathbf{1 0 0}$	$\mathbf{1 5 . 5}$	$\mathbf{1 1 5 . 5}$	

Previous	Principal	Interest	Total	Principal
principal	payment	payment	payment	balance
balance				

Loan amortization schedule

n	S_{n-1}	T_{n}	Z_{n}	A_{n}	S_{n}
1	100	0	5	5	100
2	100	0	5	5	100
3	100	0	5	5	100
4	100	100	5	105	0
Total		$\mathbf{1 0 0}$	$\mathbf{2 0}$	$\mathbf{1 2 0}$	

Previous	Principal	Interest	Total	Principal
principal	payment	payment	payment	balance
balance				

Equal total payments

$$
\begin{aligned}
& S(1+r)^{N}=A_{1}(1+r)^{N-1}+A_{2}(1+r)^{N-2}+\cdots+A_{N} \\
& S=\frac{A_{1}}{1+r}+\frac{A_{2}}{(1+r)^{2}}+\cdots+\frac{A_{N}}{(1+r)^{N}}
\end{aligned}
$$

Periodic payment

$$
S(1+r)^{N}=A \frac{(1+r)^{N}-1}{r} \quad A=\frac{S \cdot r \cdot(1+r)^{N}}{(1+r)^{N}-1}
$$

Equal total payments

$$
Z_{n}=r \cdot S_{n-1} \quad T_{n}=S_{n-1}-S_{n} \quad A_{n}=T_{n}+Z_{n}
$$

$$
\begin{gathered}
S_{n}=S(1+r)^{n}-\left(A_{1}(1+r)^{n-1}+A_{2}(1+r)^{n-2}+\cdots+A_{n-1}(1+r)\right)-A_{n} \\
S_{n}=(1+r)\left(S(1+r)^{n-1}-\left(A_{1}(1+r)^{n-2}+A_{2}(1+r)^{n-3}+\cdots+A_{n-1}\right)\right)-A_{n} \\
S_{n}=(1+r) S_{n-1}-A_{n}
\end{gathered}
$$

Loan amortization schedule - equal total payments

 (interest payment as a percent of the previous principal balance)| n | S_{n-1} | T_{n} | Z_{n} | A_{n} | S_{n} |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | 100 | 23.2 | 5 | 28.2 | 76.8 |
| 2 | 76.8 | 24.36 | 3.84 | 28.2 | 52.44 |
| 3 | 52.44 | 25.58 | 2.62 | 28.2 | 26.86 |
| 4 | 26.86 | 26.86 | 1.34 | 28.2 | 0 |
| Total | | $\mathbf{1 0 0}$ | $\mathbf{1 2 . 8}$ | $\mathbf{1 1 2 . 8}$ | |

Previous	Principal	Interest	Total	Principal
principal balance	payment	payment	payment	balance

Loan amortization schedule - given total payments

 (interest payment as a percent of the previous principal balance)| n | S_{n-1} | T_{n} | Z_{n} | A_{n} | S_{n} |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | 100 | 15 | 5 | 20 | 85 |
| 2 | 85 | 25.75 | 4.25 | 30 | 59.25 |
| 3 | 59.25 | 37.04 | 2.96 | 40 | 22.21 |
| 4 | 22.21 | 22.21 | 1.11 | 23.32 | 0 |
| Total | | $\mathbf{1 0 0}$ | $\mathbf{1 3 . 3 2}$ | $\mathbf{1 1 3 . 3 2}$ | |

$\begin{array}{lllll}\text { Previous } & \text { Principal } & \text { Interest } & \text { Total } & \text { Principal } \\ \text { principal } & \text { payment } & \text { payment } & \text { payment } & \text { balance } \\ \text { balance } & & & & \end{array}$

$$
S(1+r)^{4}=A_{1}(1+r)^{3}+A_{2}(1+r)^{2}+A_{3}(1+r)+A_{4}
$$

Equal total payments

(continuously compounded interest)

$$
S e^{r \cdot N}=A_{1} e^{r(N-1)}+A_{2} e^{r(N-2)}+\cdots+A_{N}
$$

$$
S e^{r \cdot N}=A \frac{e^{r \cdot N}-1}{e^{r}-1} \quad A=S \cdot e^{r \cdot N} \cdot \frac{e^{r}-1}{e^{r \cdot N}-1}
$$

$$
Z_{n}=S_{n-1} \cdot\left(e^{r}-1\right) \quad T_{n}=S_{n-1}-S_{n} \quad A_{n}=T_{n}+Z_{n}
$$

Loan amortization schedule - equal total payments

 (continuously compounded interest)| n | S_{n-1} | T_{n} | Z_{n} | A_{n} | S_{n} |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | 100 | 23.16 | 5.13 | 28.28 | 76.84 |
| 2 | 76.84 | 24.34 | 3.94 | 28.28 | 52.5 |
| 3 | 52.5 | 25.59 | 2.69 | 28.28 | 26.91 |
| 4 | 26.91 | 26.91 | 1.38 | 28.28 | 0 |
| Total | | $\mathbf{1 0 0}$ | $\mathbf{1 3 . 1 4}$ | $\mathbf{1 1 3 . 1 4}$ | |

Previous	Principal	Interest	Total	Principal
principal				
balance	payment	payment	payment	balance

Example 2a - Loan Amortization Schedule

- An investor borrowed 1000 PLN. The loan was for 6 months at 24% annual interest (compound interest rate).
- Create a loan amortization schedule if since the fourth month the annual interest is 18%.

$$
\begin{array}{cl}
S=1000 & N=6 \quad r=\frac{0.24}{12}=0.02 \\
A=\frac{S \cdot r \cdot(1+r)^{N}}{(1+r)^{N}-1} & A=\frac{1000 \cdot 0.02 \cdot(1+0.02)^{6}}{(1+0.02)^{6}-1}=178.5 \\
S_{3}=514.8 & N=3
\end{array}
$$

n	S_{n-1}	T_{n}	Z_{n}	A_{n}	S_{n}
1	1000	158.5	20.0	178.5	841.5
2	841.5	161.7	16.8	178.5	679.8
3	679.8	164.9	13.6	178.5	514.8
4	514.8	169.1	7.7	176.8	345.8
5	345.8	171.6	5.2	176.8	174.2
6	174.2	174.2	2.6	176.8	0
Total		$\mathbf{1 0 0 0}$	$\mathbf{6 5 . 9}$	$\mathbf{1 0 6 5 . 9}$	

$\begin{array}{lllll}\begin{array}{l}\text { Previous } \\ \text { principal }\end{array} & \text { Principal } & \text { Interest } & \text { Total } & \text { Principal } \\ \text { balance } & & \text { payment } & \text { payment } & \text { balance }\end{array}$

Example 2b - Loan Amortization Schedule

- An investor borrowed 1000 PLN. The loan was for 6 months at 24% annual interest (compound interest rate).
- Create a loan amortization schedule if the investor pays additional 100 PLN with the third payment.

n	S_{n-1}	T_{n}	Z_{n}	A_{n}	S_{n}
1	1000	158.5	20.0	178.5	841.5
2	841.5	161.7	16.8	178.5	679.8
3	679.8	264.9	13.6	278.5	414.8
4	414.8	170.2	8.3	178.5	244.6
5	244.6	173.6	4.9	178.5	71.0
6	71.0	71.0	1.4	72.4	0.0
Total		$\mathbf{1 0 0 0}$	$\mathbf{6 5 . 0}$	$\mathbf{1 0 6 5 . 0}$	

Previous	Principal	Interest	Total	Principal
principal				
balance	payment	payment	payment	balance

Example 2c - Loan Amortization Schedule

- An investor borrowed 1000 PLN. The loan was for 6 months at 24% annual interest (compound interest rate).
- Create a loan amortization schedule if the investor doesn't pay the fourth payment. He pays it plus interest with the fifth payment.

n	S_{n-1}	T_{n}	Z_{n}	A_{n}	S_{n}
1	1000	158.5	20.0	178.5	841.5
2	841.5	161.7	16.8	178.5	679.8
3	679.8	164.9	13.6	178.5	514.8
4	514.8	-10.3	10.3	0	525.1
5	525.1	350.1	10.5	360.6	175.0
6	175.0	175.0	3.5	178.5	0
Total		$\mathbf{1 0 0 0}$	$\mathbf{7 4 . 7}$	$\mathbf{1 0 7 4 . 7}$	
Previous principal balance					Principal payment
Interest payment	Total payment	Principal balance			

Example 2d - Loan Amortization Schedule

- An investor borrowed 1000 PLN. The loan was for 6 months at 24% annual interest (compound interest rate).
- Create a loan amortization schedule if the first payment is postponed for two months.

n	S_{n-1}	T_{n}	Z_{n}	A_{n}	S_{n}
1	1040.4	164.9	20.8	185.7	875.5
2	875.5	168.2	17.5	185.7	707.2
3	707.2	171.6	14.1	185.7	535.6
4	535.6	175.0	10.7	185.7	360.6
5	360.6	178.5	7.2	185.7	182.1
6	182.1	182.1	3.6	185.7	0
Total		$\mathbf{1 0 4 0 . 4}$	$\mathbf{7 4 . 0}$	$\mathbf{1 1 1 4 . 4}$	
$\begin{array}{l}\text { Previous } \\ \text { principal } \\ \text { balance }\end{array}$					
Principal	Interest				
payment	Total				
payment					

balance\end{array}\right]\)

Example 2e - Loan Amortization Schedule

- An investor borrowed 1000 PLN. The loan was for 6 months at 24% annual interest (compound interest rate).
- Create a loan amortization schedule if the investor pays two payments, than he doesn't pay for 3 months. The investor begins to pay off the loan again in the sixth month paying three equal payments every two months. Since the third month the annual interest rate is 18%.

n	S_{n-1}	T_{n}	Z_{n}	A_{n}	S_{n}
1	1000	158.5	20.0	178.5	841.5
2	841.5	161.7	16.8	178.5	679.8
6	710.8	237.0	10.7	247.7	473.8
8	480.9	240.5	7.2	247.7	240.4
10	244.0	244.0	3.7	247.7	0
Total		$\mathbf{1 0 0 0}$	$\mathbf{5 8 . 4}$	$\mathbf{1 0 5 8 . 4}$	

Previous	Principal	Interest	Total	Principal
principal				
balance	payment	payment	payment	balance

$$
\begin{gathered}
S_{5}=679.8 \cdot(1.015)^{3}=710.8 \\
S_{5}=\frac{A_{6}}{1+r}+\frac{A_{8}}{(1+r)^{3}}+\frac{A_{10}}{(1+r)^{5}} \\
A_{6}=A_{8}=A_{10}=A \\
710.8=\frac{A}{1.015}+\frac{A}{(1.015)^{3}}+\frac{A}{(1.015)^{5}} \\
S_{7}=473.8 \cdot 1.015=480.9
\end{gathered}
$$

Example 3

- An investor borrowed 50 PLN. Find how many payments of 15 PLN should be made if the effective rate of interest is 10%.
- Solve the problem of non-integer number of payments.

$$
S=50 \quad A=15
$$

$$
\begin{aligned}
& S(1+r)^{N}=A \frac{(1+r)^{N}-1}{r} \\
& N=\frac{\ln 1.5}{\ln 1.1}=4.25
\end{aligned}
$$

Previous	Principal	Interest	Total	Principal
principal balance	payment	payment	payment	balance

n	S_{n-1}	T_{n}	Z_{n}	A_{n}	S_{n}
1	50	10	5	15	40
2	40	11	4	15	29
3	29	12.1	2.9	15	16.9
4	16.9	13.3	1.7	15	$\mathbf{3 . 5 9}$
	3.59	3.59	0.36	3.95	

Additional payment

Enlargement of one of the payment

$$
\begin{array}{ll}
A_{1}=A_{2}=A_{3}=15 & A_{4}=18.59 \\
A_{2}=A_{3}=A_{4}=15 & A_{1}=17.70 \\
A_{1}=A_{3}=A_{4}=15 & A_{2}=17.97 \\
A_{1}=A_{2}=A_{4}=15 & A_{3}=18.26
\end{array}
$$

New payments

$$
N=4 \quad A=\frac{S \cdot r \cdot(1+r)^{N}}{(1+r)^{N}-1}
$$

$$
A=15.77
$$

