Fundamentals of Financial Arithmetic Lecture 6

Dr Wioletta Nowak

Example - Debt consolidation loans

- 12 monthly payments of 10 PLN, 15% annual interest rate (compounding quarterly)
- 5 semi-annual payments of 100 PLN, 12% annual interest rate (compounding monthly).
- 10 quarterly payments of consolidated loan, 18% annual interest rate (compounding annually)

Example - Debt consolidation loans

$$
\begin{gathered}
S=\frac{A}{(1+r)^{N}} \frac{(1+r)^{N}-1}{r} \\
S_{1}=\frac{10}{\left(1+r_{1}\right)^{12}} \frac{\left(1+r_{1}\right)^{12}-1}{r_{1}} \quad r_{1}=\left(1+\frac{0.15}{4}\right)^{\frac{1}{3}}=0.01235 \\
S_{2}=\frac{100}{\left(1+r_{2}\right)^{5}} \frac{\left(1+r_{2}\right)^{5}-1}{r_{2}} \quad r_{2}=\left(1+\frac{0.12}{12}\right)^{6}=0.06152 \\
S_{1}=110.9
\end{gathered} S_{2}=419.5 \$
$$

Example - Debt consolidation loans

$$
S=530.4
$$

$$
\begin{gathered}
A=\frac{S \cdot r \cdot(1+r)^{N}}{(1+r)^{N}-1} \\
A=66.1
\end{gathered}
$$

$$
r=(1+0.18)^{\frac{1}{4}}=0.04225
$$

Treasury bills

- Treasury bills are discounted short-term debt securities with maturities of up to one year.
- Treasury bills are sold at a discount off their nominal value.
- Treasury bills represent an important instrument of governmental fiscal policy and the central bank's monetary policy.
- The nominal value is payable to the final holder upon redemption on maturity.
- Nominal/face value - 10000 PLN in Poland.
- Maturity - the date the bill is redeemed and the investor is paid the face value amount.
- Regular Treasury bill series are issued weekly (13, 26 or 52 weeks in Poland).

Bill valuation methods

- $\boldsymbol{P}_{1}-\quad$ purchase price (at which investor can buy)
- $\boldsymbol{P}_{2}-$ nominal/face value (principal)
- $t-$ number o days from purchase to maturity

Bill valuation methods

- The method applied to determine the value of bills depends on whether the bill price is based on the rate of return (r) or the rate of discount (d).
- Bond prices are quoted relative to a 100 PLN face/nominal value.

Treasury bills - the rate of return

Treasury bills - the rate of return

$$
r=\frac{P_{2}-P_{1}}{P_{1}} \cdot \frac{360}{t}
$$

Treasury bills - the rate of return for the holding period

$$
\begin{aligned}
& \stackrel{t_{s}}{P_{1}} \cdot P_{s} \\
& r_{s}=\frac{P_{s}-P_{1}}{P_{1}} \cdot \frac{360}{t_{s}}
\end{aligned}
$$

Treasury bills - the discount rate

$$
\begin{gathered}
\overbrace{P_{1}}^{t} \\
d=\frac{P_{2}-P_{1}}{P_{2}} \cdot \frac{360}{t}
\end{gathered}
$$

Treasury bills - price of the Treasury bills

- The price per 100 PLN principal (bills quoted on the basis of the rate of return).

$$
P=\frac{360}{r \cdot t+360} \cdot 100
$$

- The price per 100 PLN principal (bills quoted on the basis of the discount rate)

$$
P=\left(1-\frac{d \cdot t}{360}\right) \cdot 100
$$

Treasury bills

$$
\frac{360}{r \cdot t+360} \cdot 100=\left(1-\frac{d \cdot t}{360}\right) \cdot 100
$$

$$
r=\frac{d}{1-d \cdot \frac{t}{360}}
$$

$$
d=\frac{r}{1+r \cdot \frac{t}{360}}
$$

The rate of return for the known discount rate

The discount rate for the known rate of return

Example 1 - Treasury bills

Investor buys Treasury bills at the primary market with maturity 26 weeks. The nominal value of bills is 1.5 million PLN. The investors pays 97.9005 per a 100 PLN.

$$
9790.05 \cdot 150=1468508
$$

- The rate of return

$$
r=\frac{100-97.9005}{97.9005} \cdot \frac{360}{182}=0.04242
$$

- The discount rate

$$
d=\frac{100-97.9005}{100} \cdot \frac{360}{182}=0.04153
$$

Example 2 - Treasury bills

- Assuming that the Treasury bills have been issued at a rate of return of 9% per 60 days, calculate the appropriate discount rate.

$$
d=\frac{r}{1+r \cdot \frac{t}{360}}=\frac{0.09}{1+0.09 \cdot \frac{60}{360}}=0.08867
$$

A certificate of deposit - CD

- A certificate of deposit is a savings certificate with a fixed maturity date, specified fixed interest rate issued by commercial banks.
- A CD restricts access to the funds until the maturity date of the investment.

A certificate of deposit

Face value Price at maturity

$$
P=F V \cdot\left(1+r_{k} \cdot \frac{t}{360}\right)
$$

$\boldsymbol{r}_{\boldsymbol{k}}$ - interest rate

A certificate of deposit

Number of days
from purchase to maturity

$$
F V \cdot\left(1+r_{k} \cdot \frac{t}{360}\right)=P_{p} \cdot\left(1+r_{p} \cdot \frac{t_{p}}{360}\right)
$$

$$
P_{p}=\frac{F V \cdot\left(1+r_{k} \cdot \frac{t}{360}\right)}{\left(1+r_{p} \cdot \frac{t_{p}}{360}\right)}
$$

$$
P_{p}=\frac{100 \cdot\left(1+r_{k} \cdot \frac{t}{360}\right)}{\left(1+r_{p} \cdot \frac{t_{p}}{360}\right)}
$$

Purchase price

$C D$ - the rate of return for the holding period

Example 3 - CD

- Investor buys CD at the primary market with maturity 13 weeks. The nominal value of CD is 1 million PLN. The rate of return is 20%.
- Calculate the price at maturity

$$
P=1000000 \cdot\left(1+0.2 \cdot \frac{91}{360}\right)=1050556.556
$$

Example $3-\mathrm{CD}$

- After 31 days the investor sells CD at a 19.75% rate of return.

$$
\begin{aligned}
& \underset{000}{\stackrel{31 \text { days }}{\leftrightarrows}} \stackrel{60 \text { days }}{\rightleftarrows} \stackrel{1017076.8}{\rightleftarrows} \\
& \begin{array}{c}
P_{s}=\frac{1000000 \cdot\left(1+0.2 \cdot \frac{91}{360}\right)}{\left(1+0.1975 \cdot \frac{60}{360}\right)}=1017076.8 \\
\text { Interest for } 100 \mathrm{PLN} \\
\begin{array}{l}
101.7077-\text { dirty price } \\
101.7077-1.7222=99.9855-\text { clean price }
\end{array} 100 \cdot \frac{0.2 \cdot 31}{360}=1.722
\end{array}
\end{aligned}
$$

Example 3 - CD

$$
\begin{aligned}
& 1000000 \stackrel{\text { 31 days }}{\stackrel{\text { 60 days }}{\leftrightarrows} \stackrel{20 \%}{\longleftrightarrow} 1050556.56} \\
& P_{s}=1000000 \cdot\left(1+0.2 \cdot \frac{31}{360}\right)=1017222.2 \\
& r_{s}=\frac{1050556.56-1017222.2}{1017222.2} \cdot \frac{360}{60}=0.1966
\end{aligned}
$$

Fundamentals of bond valuation

- Bond - a loan between a borrower (issuer) and a lender (investor, creditor)
- The issuer promises to make regular interest payments to the investor at a specified rate (the coupon rate) on the amount it has borrowed (the face/par amount) until a specified date (the maturity date).
- Once the bond matures, the interest payments stop and the issuer is required to repay the face amount of the principal to the investor.

Fundamentals of bond valuation

- Bonds can be priced at a premium, discount, or at par.
- If the bond's price is higher than its par value, it will sell at a premium because its interest rate is higher than current prevailing rates.
- If the bond's price is lower than its par value, the bond will sell at a discount because its interest rate is lower than current prevailing interest rates.

Fundamentals of bond valuation

- Bond valuation is the determination of the fair price of a bond.
- The price of bond is the sum of the present values of all expected coupon payments plus the present value of the par value at maturity.
- Yield to maturity - is the internal rate of return earned by investor who buys the bond today at the market price, assuming that the bond will be held until maturity.

Bond pricing - coupon bonds

- C_{i} - income from the ownership bonds in time i, n - number of payments, $Y T M$ - yield to maturity, P - bond price

Bond pricing - coupon bonds

- Constant coupon rate, C - coupon payment, M - value at maturity or par value, n - number of payments, $Y T M$ - yield to maturity, P - bond price

$$
\begin{gathered}
P=\frac{C}{1+Y T M}+\frac{C}{(1+Y T M)^{2}}+\cdots+\frac{C+M}{(1+Y T M)^{n}} \\
P=\frac{C}{1+Y T M}\left(1+\frac{1}{1+Y T M}+\cdots+\frac{1}{(1+Y T M)^{n-1}}\right)+\frac{M}{(1+Y T M)^{n}} \\
P=C \cdot \frac{1-(1+Y T M)^{-n}}{Y T M}+\frac{M}{(1+Y T M)^{n}}
\end{gathered}
$$

Example 4 - coupon bond

- Calculate the price of a bond with a par value of 100 PLN to be paid in two years (after and before the coupon payment), a coupon rate of 10%, and a required yield of 9%.

$$
P=\frac{10}{1.09}+\frac{110}{(1.09)^{2}}=101.76
$$

$$
P=10+\frac{10}{1.09}+\frac{110}{(1.09)^{2}}=111.76
$$

Example 5 - coupon bond

- Calculate the price of a bond with a par value of 100 PLN to be paid in two years and six months, a coupon rate of 10%, and a required yield of 8%. An annual coupon payment.

Zero-coupon bonds

- Zero-coupon or accrual bonds do not pay a coupon. Instead, these types of bonds are issued at a deep discount and pay the full face value at maturity.

Fundamentals of bond valuation - bond price

- Zero-coupon bond, M - value at maturity, n - number of periods, r - interest rate, P - bond price

Example 6 - pricing zero-coupon bonds

- Calculate the price of a zero-coupon bond that is maturing in one and a half years, has a par value of 100 PLN and a required yield of 5%.

$$
P=\frac{100}{(1+0.05)^{1.5}}=92.94
$$

Perpetual bond - pricing

- A bond with no maturity date. Issuers pay coupons forever.

$$
P=\frac{C}{1+r}+\frac{C}{(1+r)^{2}}+\frac{C}{(1+r)^{3}}+\cdots
$$

$$
P=\frac{C}{r}
$$

- C - coupon interest on bond, r - an expected yield for maximum term available

