Fundamentals of Financial Arithmetic Lecture 6

Dr Wioletta Nowak

Example – Debt consolidation loans

- 12 monthly payments of 10 PLN, 15% annual interest rate (compounding quarterly)
- 5 semi-annual payments of 100 PLN, 12% annual interest rate (compounding monthly).

 10 quarterly payments of consolidated loan, 18% annual interest rate (compounding annually)

Example – Debt consolidation loans

$$S = \frac{A}{(1+r)^{N}} \frac{(1+r)^{N} - 1}{r}$$

$$S_{2} = \frac{100}{(1+r_{2})^{5}} \frac{(1+r_{2})^{5}-1}{r_{2}} \qquad r_{2} = \left(1 + \frac{0.12}{12}\right)^{6} = 0.06152$$

 $S_1 = 110.9$ $S_2 = 419.5$

Example – Debt consolidation loans

S = 530.4

$$A = \frac{S \cdot r \cdot (1+r)^{N}}{(1+r)^{N} - 1} \qquad r = (1+0.18)^{\frac{1}{4}} = 0.04225$$

A = 66.1

Treasury bills

- Treasury bills are discounted short-term debt securities with maturities of up to one year.
- Treasury bills are sold at a discount off their nominal value.
- Treasury bills represent an important instrument of governmental fiscal policy and the central bank's monetary policy.
- The nominal value is payable to the final holder upon redemption on maturity.
- Nominal/face value 10 000 PLN in Poland.
- Maturity the date the bill is redeemed and the investor is paid the face value amount.
- Regular Treasury bill series are issued weekly (13, 26 or 52 weeks in Poland).

Bill valuation methods

- P_1 purchase price (at which investor can buy)
- P_2 nominal/face value (principal)
- t number o days from purchase to maturity

Bill valuation methods

- The method applied to determine the value of bills depends on whether the bill price is based on the rate of return (*r*) or the rate of discount (*d*).
- Bond prices are quoted relative to a 100 PLN face/nominal value.

Treasury bills – the rate of return

360

Treasury bills – the rate of return

Treasury bills – the rate of return for the holding period

Treasury bills – the discount rate

Treasury bills – price of the Treasury bills

• The price per 100 PLN principal (bills quoted on the basis of the rate of return).

$$P = \frac{360}{r \cdot t + 360} \cdot 100$$

• The price per 100 PLN principal (bills quoted on the basis of the discount rate)

$$P = \left(1 - \frac{d \cdot t}{360}\right) \cdot 100$$

Treasury bills

$$\frac{360}{r \cdot t + 360} \cdot 100 = \left(1 - \frac{d \cdot t}{360}\right) \cdot 100$$

$$r = \frac{d}{1 - d \cdot \frac{t}{360}}$$

$$d = \frac{r}{1 + r \cdot \frac{t}{360}}$$

The rate of return for the known discount rate

The discount rate for the known rate of return

Example 1 – Treasury bills

Investor buys Treasury bills at the primary market with maturity 26 weeks. The nominal value of bills is 1.5 million PLN. The investors pays 97.9005 per a 100 PLN.

9790.05 \cdot 150 = 1468508

• The rate of return

$$r = \frac{100 - 97.9005}{97.9005} \cdot \frac{360}{182} = 0.04242$$

• The discount rate

$$d = \frac{100 - 97.9005}{100} \cdot \frac{360}{182} = 0.04153$$

Example 2 – Treasury bills

• Assuming that the Treasury bills have been issued at a rate of return of 9% per 60 days, calculate the appropriate discount rate.

$$d = \frac{r}{1 + r \cdot \frac{t}{360}} = \frac{0.09}{1 + 0.09 \cdot \frac{60}{360}} = 0.08867$$

A certificate of deposit – CD

- A certificate of deposit is a savings certificate with a fixed maturity date, specified fixed interest rate issued by commercial banks.
- A CD restricts access to the funds until the maturity date of the investment.

A certificate of deposit

$$P = FV \cdot \left(1 + r_k \cdot \frac{t}{360}\right)$$

$$r_k$$
 – interest rate

A certificate of deposit

Purchase price

CD – the rate of return for the holding period

Example 3 – CD

- Investor buys CD at the primary market with maturity 13 weeks. The nominal value of CD is 1 million PLN. The rate of return is 20%.
- Calculate the price at maturity

Example 3 – CD

• After 31 days the investor sells CD at a 19.75% rate of return.

Example 3 - CD

Fundamentals of bond valuation

- Bond a loan between a borrower (issuer) and a lender (investor, creditor)
- The issuer promises to make regular interest payments to the investor at a specified rate (the **coupon rate**) on the amount it has borrowed (the **face/par amount**) until a specified date (the **maturity date**).
- Once the bond matures, the interest payments stop and the issuer is required to repay the face amount of the principal to the investor.

Fundamentals of bond valuation

- Bonds can be priced at **a premium**, **discount**, or **at par**.
- If the bond's price is higher than its par value, it will sell at a premium because its interest rate is higher than current prevailing rates.
- If the bond's price is lower than its par value, the bond will sell at a discount because its interest rate is lower than current prevailing interest rates.

Fundamentals of bond valuation

- Bond valuation is the determination of the fair price of a bond.
- The price of bond is the sum of the present values of all expected coupon payments plus the present value of the par value at maturity.
- Yield to maturity is the internal rate of return earned by investor who buys the bond today at the market price, assuming that the bond will be held until maturity.

Bond pricing – coupon bonds

• C_i – income from the ownership bonds in time *i*, *n* – number of payments, *YTM* – yield to maturity, *P* – bond price

Bond pricing – coupon bonds

• Constant coupon rate, C – coupon payment, M – value at maturity or par value, n – number of payments, YTM – yield to maturity, P – bond price

$$P = \frac{C}{1 + YTM} + \frac{C}{(1 + YTM)^2} + \cdots + \frac{C + M}{(1 + YTM)^n}$$
$$P = \frac{C}{1 + YTM} \left(1 + \frac{1}{1 + YTM} + \cdots + \frac{1}{(1 + YTM)^{n-1}} \right) + \frac{M}{(1 + YTM)^n}$$
$$P = C \cdot \frac{1 - (1 + YTM)^{-n}}{YTM} + \frac{M}{(1 + YTM)^n}$$

Example 4 – coupon bond

• Calculate the price of a bond with a par value of 100 PLN to be paid in two years (after and before the coupon payment), a coupon rate of 10%, and a required yield of 9%.

Example 5 – coupon bond

• Calculate the price of a bond with a par value of 100 PLN to be paid in two years and six months, a coupon rate of 10%, and a required yield of 8%. An annual coupon payment.

Zero-coupon bonds

• Zero-coupon or accrual bonds do not pay a coupon. Instead, these types of bonds are issued at a deep discount and pay the full face value at maturity.

Fundamentals of bond valuation – bond price

• Zero-coupon bond, M – value at maturity, n – number of periods, r – interest rate, P – bond price

Example 6 – pricing zero-coupon bonds

• Calculate the price of a zero-coupon bond that is maturing in one and a half years, has a par value of 100 PLN and a required yield of 5%.

$$P = \frac{100}{\left(1 + 0.05\right)^{1.5}} = 92.94$$

Perpetual bond – pricing

• A bond with no maturity date. Issuers pay coupons forever.

$$P = \frac{C}{1+r} + \frac{C}{(1+r)^2} + \frac{C}{(1+r)^3} + \cdots$$

$$P = \frac{C}{r}$$

• C – coupon interest on bond, r – an expected yield for maximum term available