Fundamentals of Financial Arithmetic Lecture 8

Dr Wioletta Nowak

Fundamentals of bond valuation

- Bond a loan between a borrower (issuer) and a lender (investor, creditor)
- The issuer promises to make regular interest payments to the investor at a specified rate (the **coupon rate**) on the amount it has borrowed (the **face/par amount**) until a specified date (the **maturity date**).
- Once the bond matures, the interest payments stop and the issuer is required to repay the face amount of the principal to the investor.

Fundamentals of bond valuation

- Bonds can be priced at **a premium**, **discount**, or **at par**.
- If the bond's price is higher than its par value, it will sell at a premium because its interest rate is higher than current prevailing rates.
- If the bond's price is lower than its par value, the bond will sell at a discount because its interest rate is lower than current prevailing interest rates.

Fundamentals of bond valuation

- Bond valuation is the determination of the fair price of a bond.
- The price of bond is the sum of the present values of all expected coupon payments plus the present value of the par value at maturity.
- Yield to maturity is the internal rate of return earned by investor who buys the bond today at the market price, assuming that the bond will be held until maturity.

Bond pricing – coupon bonds

• C_i – income from the ownership bonds at time *i*, *n* – number of payments, *YTM* – yield to maturity, *P* – bond price

Bond pricing – coupon bonds

• Constant coupon rate, C – coupon payment, M – value at maturity or par value, n – number of payments, YTM – yield to maturity, P – bond price

$$P = \frac{C}{1 + YTM} + \frac{C}{(1 + YTM)^2} + \cdots + \frac{C + M}{(1 + YTM)^n}$$
$$P = \frac{C}{1 + YTM} \left(1 + \frac{1}{1 + YTM} + \cdots + \frac{1}{(1 + YTM)^{n-1}} \right) + \frac{M}{(1 + YTM)^n}$$
$$P = C \cdot \frac{1 - (1 + YTM)^{-n}}{YTM} + \frac{M}{(1 + YTM)^n}$$

Suppose a 4-year bond with the value at maturity of 100 PLN and a coupon rate of 10%.

Time to maturity	Price of bond			Dromium	Discount	Percent of	Percent of
	YTM= 9%	YTM=10%	YTM=11%	riennum	Discount	decline	decline
4	103.24	100	96.90	3.24	3.10	_	_
3	102.53	100	97.56	2.53	2.44	21.87%	21.23%
2	101.76	100	98.29	1.76	1.71	30.51%	29.92%
1	100.92	100	99.10	0.92	0.9	47.85%	47.39%

$$\frac{3.24 - 2.53}{3.24} = 0.2187$$

• Suppose a 3-year bond with the value at maturity of 100 PLN.

Courses note	Price o	Percent of		
Coupon rate	YTM = 8%	YTM = 12%	decrease	
10%	105.15	95.20	9.47%	
15%	118.04	107.21	9.18%	

 $\frac{105.15 - 95.2}{105.15} = 0.0947$

Example 3 n=10 M=100

• Suppose a bond with the value at maturity of 100 PLN and a coupon rate of 10%.

Time to maturity	Price o	Percent of	
(in years)	YTM = 8%	YTM = 12%	decrease
3	105.15	95.20	9.47%
5	107.99	92.79	14.07%

Example 5 M=100, rc=5%

• Calculate the price of a bond with a par value of 100 PLN to be paid in two years (after and before the coupon payment), a coupon rate of 10%, and a required yield of 9%.

• Calculate the price of a bond with a par value of 100 PLN to be paid in two years and six months, a coupon rate of 10%, and a required yield of 8%. An annual coupon payment.

Zero-coupon bonds

• Zero-coupon or accrual bonds do not pay a coupon. Instead, these types of bonds are issued at a deep discount and pay the full face value at maturity.

Fundamentals of bond valuation – bond price

• Zero-coupon bond, M – value at maturity, n – number of periods, r – interest rate, P – bond price

• Calculate the price of a zero-coupon bond that is maturing in one and a half years, has a par value of 100 PLN and a required yield of 5%.

$$P = \frac{100}{\left(1 + 0.05\right)^{1.5}} = 92.94$$