Fundamentals of Financial Arithmetic Lecture 8

Dr Wioletta Nowak

Fundamentals of bond valuation

- Bond - a loan between a borrower (issuer) and a lender (investor, creditor)
- The issuer promises to make regular interest payments to the investor at a specified rate (the coupon rate) on the amount it has borrowed (the face/par amount) until a specified date (the maturity date).
- Once the bond matures, the interest payments stop and the issuer is required to repay the face amount of the principal to the investor.

Fundamentals of bond valuation

- Bonds can be priced at a premium, discount, or at par.
- If the bond's price is higher than its par value, it will sell at a premium because its interest rate is higher than current prevailing rates.
- If the bond's price is lower than its par value, the bond will sell at a discount because its interest rate is lower than current prevailing interest rates.

Fundamentals of bond valuation

- Bond valuation is the determination of the fair price of a bond.
- The price of bond is the sum of the present values of all expected coupon payments plus the present value of the par value at maturity.
- Yield to maturity - is the internal rate of return earned by investor who buys the bond today at the market price, assuming that the bond will be held until maturity.

Bond pricing - coupon bonds

- C_{i} - income from the ownership bonds at time i, n - number of payments, $Y T M$ - yield to maturity, P - bond price

Bond pricing - coupon bonds

- Constant coupon rate, C - coupon payment, M - value at maturity or par value, n - number of payments, $Y T M$ - yield to maturity, P - bond price

$$
\begin{gathered}
P=\frac{C}{1+Y T M}+\frac{C}{(1+Y T M)^{2}}+\cdots+\frac{C+M}{(1+Y T M)^{n}} \\
P=\frac{C}{1+Y T M}\left(1+\frac{1}{1+Y T M}+\cdots+\frac{1}{(1+Y T M)^{n-1}}\right)+\frac{M}{(1+Y T M)^{n}} \\
P=C \cdot \frac{1-(1+Y T M)^{-n}}{Y T M}+\frac{M}{(1+Y T M)^{n}}
\end{gathered}
$$

Example 1

Suppose a 4 -year bond with the value at maturity of 100 PLN and a coupon rate of 10%.

Time to maturity	Price of bond			Premium	Discount	Percent of premium decline	Percent of discount decline
	YTM 9%	YTM $=10 \%$	YTM $=11 \%$			-	
4	103.24	100	96.90	3.24	3.10	-	-
3	102.53	100	97.56	2.53	2.44	21.87%	21.23%
2	101.76	100	98.29	1.76	1.71	30.51%	29.92%
1	100.92	100	99.10	0.92	0.9	47.85%	47.39%

$$
\frac{3.24-2.53}{3.24}=0.2187
$$

Example 2

- Suppose a 3-year bond with the value at maturity of 100 PLN.

Coupon rate	Price of bond		Percent of decrease
	$\mathrm{YTM}=8 \%$	$\mathrm{YTM}=12 \%$	
10%	105.15	95.20	9.18%
15%	118.04	107.21	

$$
\frac{105.15-95.2}{105.15}=0.0947
$$

Example 3

$$
\mathrm{n}=10 \mathrm{M}=100
$$

Example 4

- Suppose a bond with the value at maturity of 100 PLN and a coupon rate of 10%.

Time to maturity (in years)	Price of bond		Percent of decrease
	$\mathrm{YTM}=8 \%$	$\mathrm{YTM}=12 \%$	
3	105.15	95.20	14.07%
5	107.99	92.79	

Example 5
$\mathrm{M}=100, \mathrm{rc}=5 \%$

Example 6

- Calculate the price of a bond with a par value of 100 PLN to be paid in two years (after and before the coupon payment), a coupon rate of 10%, and a required yield of 9%.

$$
P=\frac{10}{1.09}+\frac{110}{(1.09)^{2}}=101.76
$$

$$
P=10+\frac{10}{1.09}+\frac{110}{(1.09)^{2}}=111.76
$$

Example 7

- Calculate the price of a bond with a par value of 100 PLN to be paid in two years and six months, a coupon rate of 10%, and a required yield of 8%. An annual coupon payment.

Zero-coupon bonds

- Zero-coupon or accrual bonds do not pay a coupon. Instead, these types of bonds are issued at a deep discount and pay the full face value at maturity.

Fundamentals of bond valuation - bond price

- Zero-coupon bond, M - value at maturity, n - number of periods, r - interest rate, P - bond price

Example 8

- Calculate the price of a zero-coupon bond that is maturing in one and a half years, has a par value of 100 PLN and a required yield of 5%.

$$
P=\frac{100}{(1+0.05)^{1.5}}=92.94
$$

