Financial Mathematics Lecture 7

Dr Wioletta Nowak

Fundamentals of bond valuation

- Bond a loan between a borrower (issuer) and a lender (investor, creditor)
- The issuer promises to make regular interest payments to the investor at a specified rate (the **coupon rate**) on the amount it has borrowed (the **face/par amount**) until a specified date (the **maturity date**).
- Once the bond matures, the interest payments stop and the issuer is required to repay the face amount of the principal to the investor.

Fundamentals of bond valuation

- Bonds can be priced at **a premium**, **discount**, or **at par**.
- If the bond's price is higher than its par value, it will sell at a premium because its interest rate is higher than current prevailing rates.
- If the bond's price is lower than its par value, the bond will sell at a discount because its interest rate is lower than current prevailing interest rates.

Fundamentals of bond valuation

- Bond valuation is the determination of the fair price of a bond.
- The price of bond is the sum of the present values of all expected coupon payments plus the present value of the par value at maturity.
- Yield to maturity is the internal rate of return earned by investor who buys the bond today at the market price, assuming that the bond will be held until maturity.

Bond pricing – coupon bonds

• C_i – income from the ownership bonds at time *i*, *n* – number of payments, *YTM* – yield to maturity, *P* – bond price

Bond pricing – coupon bonds

• Constant coupon rate, C – coupon payment, M – value at maturity or par value, n – number of payments, YTM – yield to maturity, P – bond price

$$P = \frac{C}{1 + YTM} + \frac{C}{(1 + YTM)^2} + \cdots + \frac{C + M}{(1 + YTM)^n}$$
$$P = \frac{C}{1 + YTM} \left(1 + \frac{1}{1 + YTM} + \cdots + \frac{1}{(1 + YTM)^{n-1}} \right) + \frac{M}{(1 + YTM)^n}$$
$$P = C \cdot \frac{1 - (1 + YTM)^{-n}}{YTM} + \frac{M}{(1 + YTM)^n}$$

Suppose a 4-year bond with the value at maturity of 100 PLN and a coupon rate of 10%.

Time to maturity	Price of bond			Dromium	Discount	Percent of	Percent of discount
	YTM= 9%	YTM=10%	YTM=11%	Premium	Discount	premium decline	decline
4	103.24	100	96.90	3.24	3.10	_	_
3	102.53	100	97.56	2.53	2.44	21.87%	21.23%
2	101.76	100	98.29	1.76	1.71	30.51%	29.92%
1	100.92	100	99.10	0.92	0.9	47.85%	47.39%

$$\frac{3.24 - 2.53}{3.24} = 0.2187$$

• Suppose a 3-year bond with the value at maturity of 100 PLN.

Counce note	Price o	Percent of	
Coupon rate	YTM = 8%	YTM = 12%	decrease
10%	105.15	95.20	9.47%
15% 118.04		107.21	9.18%

 $\frac{105.15 - 95.2}{105.15} = 0.0947$

Example 3 n=10 M=100

• Suppose a bond with the value at maturity of 100 PLN and a coupon rate of 10%.

Time to maturity	Price o	Percent of	
(in years)	YTM = 8%	YTM = 12%	decrease
3	105.15	95.20	9.47%
5	5 107.99		14.07%

Example 5 M=100, rc=5%

• Calculate the price of a bond with a par value of 100 PLN to be paid in two years (after and before the coupon payment), a coupon rate of 10%, and a required yield of 9%.

• Calculate the price of a bond with a par value of 100 PLN to be paid in two years and six months, a coupon rate of 10%, and a required yield of 8%. An annual coupon payment.

Zero-coupon bonds

• Zero-coupon or accrual bonds do not pay a coupon. Instead, these types of bonds are issued at a deep discount and pay the full face value at maturity.

Fundamentals of bond valuation – bond price

• Zero-coupon bond, M – value at maturity, n – number of periods, r – interest rate, P – bond price

• Calculate the price of a zero-coupon bond that is maturing in one and a half years, has a par value of 100 PLN and a required yield of 5%.

$$P = \frac{100}{\left(1 + 0.05\right)^{1.5}} = 92.94$$

Perpetual bond – pricing

• A bond with no maturity date. Issuers pay coupons forever.

$$P = \frac{C}{1+r} + \frac{C}{(1+r)^2} + \frac{C}{(1+r)^3} + \cdots$$

$$P = \frac{C}{r}$$

• C – coupon interest on bond, r – an expected yield for maximum term available

Duration of a financial asset that consists of fixed cash flows

• The weighted average of the times until the fixed flows are received

$$D = w_1 t_1 + w_2 t_2 + \dots + w_n t_n$$

$$w_i = \frac{PV_i}{PV} \qquad PV = PV_1 + PV_2 + \dots + PV_n$$

 PV_i – the present value of the payment at time t_i

The Macaulay duration

$$D = \frac{\sum_{k=1}^{n} \frac{k \cdot C_k}{(1 + YTM)^k}}{\sum_{k=1}^{n} \frac{C_k}{(1 + YTM)^k}}$$

$$D = \frac{\sum_{k=1}^{n} \frac{k \cdot C_k}{\left(1 + YTM\right)^k}}{P}$$

k – period in which a coupon is received

The Macaulay duration

- The weighted average of the time of receipt of a bond's fixed cash flow payments.
- The balance point of a group of cash flows.
- It helps to compare bonds with different time to maturity and different coupon rates.
- The higher a bond's coupon the shorter the Macaulay duration.
- The longer a bond's maturity the greater its duration.

$$n \to \infty$$
 $D \to \frac{1}{YTM} + \frac{1}{m}$

m – a frequency of coupon

The Macaulay duration

- The higher the YTM the shorter the Macaulay duration
- Higher frequency of coupon payment the shorter the Macaulay duration.
- Zero-coupon bonds have durations equal to their maturities.

• Suppose a 3-year bond with a value at maturity of 100 PLN, coupon rate of 5%, YTM of 10%. What is the Macaulay duration of the bond?

The modified Macaulay duration

• The modified Macaulay duration measures the price sensitivity of a bond when there is a change in the yield to maturity

$$\frac{\Delta P}{P} = -D \cdot \frac{\Delta YTM}{1 + YTM} \qquad \qquad \frac{\Delta P}{P} = -D_M \cdot \Delta YTM$$
$$D_M = \frac{D}{1 + YTM} \qquad \qquad D_M = \frac{D}{1 + YTM/m}$$

m – a frequency of coupon

• Suppose a 3-year bond with the value at maturity of 100 PLN, a coupon rate of 5% and the YTM of 10%. How much will the bond price change if the YTM increases by 1 percentage point (decreases by 1 percentage point).

$$D = 2.849 \qquad D_M = \frac{2.849}{1.1} = 2.59 \qquad \frac{\Delta P}{P} = -D_M \cdot \Delta YTM$$
$$\Delta YTM = +1\% \qquad \Delta YTM = -1\%$$
$$\frac{\Delta P}{P} = -2.59\% \qquad \frac{\Delta P}{P} = +2.59\%$$

Share evaluation models

- **Dividend discount model** method of estimating the value of a share stock as the present value of all expected future dividend payments.
- Constant dividend model
- Constant dividend growth rate model Gordon model
- Two-stage dividend growth model
- Multistage dividend growth model

Dividend discount model

Dividend discount model

 $n \rightarrow \infty$

 $P = \sum_{k=1}^{k} \frac{D_k}{(1+r)^k}$

Constant dividend model

Constant dividend growth rate model

• Dividend will grow at a constant growth rate *g*.

$$D_{k+1} = (1+g) \cdot D_k$$

• For a known D_1

$$P = \frac{D_1}{1+r} + \frac{D_1 \cdot (1+g)}{(1+r)^2} + \frac{D_1 \cdot (1+g)^2}{(1+r)^3} + \cdots$$
$$P = D_1 \cdot \sum_{k=1}^{\infty} \frac{(1+g)^{k-1}}{(1+r)^k}$$

Constant perpetual growth model

• Model in which dividends grow forever at a constant rate *g*, and the growth rate *g* is strictly less than the discount rate *r*.

Constant perpetual growth model

$$P = D_1 \cdot \sum_{k=1}^{k-1} \frac{(1+g)^{k-1}}{(1+r)^k}$$

$$\sum_{k=1}^{\infty} \frac{(1+g)^{k-1}}{(1+r)^k} = \frac{1}{1+r} \cdot \frac{1}{1-\frac{1+g}{1+r}} = \frac{1}{r-g} \qquad r > g$$

$$P = \frac{D_1}{r - g}$$

$$P = \frac{D \cdot (1 + g)}{r - g}$$

$$D_1 = (1 + g) \cdot D$$

- Suppose the current dividend is 100 PLN. If the discount rate is 10%, what is the value of the stock?
- **Constant dividend discount model** $P = \frac{D}{r} = \frac{100}{0.1} = 1000$
- **Constant perpetual growth model** (suppose dividends are projected to grow at 8% forever)

$$P = \frac{D \cdot (1+g)}{r-g} = \frac{100 \cdot (1+0.08)}{0.1-0.08} = \frac{108}{0.02} = 5400$$

Two-stage dividend growth model

• Dividend grow at a rate g_1 during a first stage of growth lasting *n* years and thereafter grow at a rate g_2 during a perpetual second stage of growth $(g_1 > g_2)$

$$P = \frac{D_1}{1+r} + \dots + \frac{D_n}{(1+r)^n} + \frac{P_n}{(1+r)^n}$$

$$D_{n} = (1 + g_{1}) \cdot D_{n-1} \qquad P_{n} = \frac{D_{n+1}}{r - g_{2}} = \frac{D_{n} \cdot (1 + g_{2})}{r - g_{2}}$$
$$D_{n+1} = (1 + g_{2}) \cdot D_{n}$$

• Suppose a firm has a current dividend of 100 PLN which is expected to grow at the rate of 8% for 3 years, and thereafter grow at the rate of 3%. With a discount rate of 10%, what is the value of stock?

$$P = \frac{D_1}{1+r} + \frac{D_2}{(1+r)^2} + \frac{D_3}{(1+r)^3} + \frac{P_3}{(1+r)^3}$$
$$D_1 = D \cdot (1+g_1) \qquad P_3 = \frac{D_4}{r-g_2} = \frac{D_3 \cdot (1+g_2)}{r-g_2}$$
$$D_2 = D \cdot (1+g_1)^2 \qquad P_3 = \frac{D \cdot (1+g_1)^3 \cdot (1+g_2)}{r-g_2}$$

- $D_1 = 100 \cdot (1 + 0.08) = 108$ $D_2 = 108 \cdot 1.08 = 116.64$
- $D_3 = 116.64 \cdot 1.08 = 125.97$

$$D_4 = 125.97 \cdot 1.03 = 129.75$$

$$P_3 = \frac{129.75}{0.1 - 0.03} = 1853.58$$

$$P = \frac{108}{1.1} + \frac{116.64}{(1.1)^2} + \frac{125.97}{(1.1)^3} + \frac{1853.58}{(1.1)^3} = 1681.84$$

• Dividend is expected to grow at g_1 for 4 years, at g_2 for 2 years, at g_3 for 3 years, and thereafter at g_4

$$P = \frac{D_1}{1+r} + \dots + \frac{D_9}{(1+r)^9} + \frac{P_9}{(1+r)^9}$$

$$D_1 = D \cdot (1+g_1)$$

$$D_2 = D_1 \cdot (1+g_1)$$

$$D_3 = D_2 \cdot (1+g_1)$$

$$D_4 = D_3 \cdot (1+g_1)$$

$$P_9 = \frac{D_{10}}{r-g_4} = \frac{D_9 \cdot (1+g_4)}{r-g_4}$$

$$D_2 = D_1 \cdot (1+g_1)$$

$$D_3 = D_2 \cdot (1+g_1)$$

$$D_4 = D_3 \cdot (1+g_1)$$