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Fundamentals of bond valuation 

• Bond – a loan between a borrower (issuer) and a 
lender (investor, creditor) 

• The issuer promises to make regular interest 
payments to the investor at a specified rate (the 
coupon rate) on the amount it has borrowed (the 
face/par amount) until a specified date (the 
maturity date).  

• Once the bond matures, the interest payments stop 
and the issuer is required to repay the face amount 
of the principal to the investor. 



Fundamentals of bond valuation 

• Bonds can be priced at a premium, discount, 
or at par. 

• If the bond's price is higher than its par value, 
it will sell at a premium because its interest 
rate is higher than current prevailing rates.   

• If the bond's price is lower than its par value, 
the bond will sell at a discount because its 
interest rate is lower than current prevailing 
interest rates. 



Fundamentals of bond valuation 

• Bond valuation is the determination of the fair 
price of a bond. 

• The price of bond is the sum of the present 
values of all expected coupon payments plus 
the present value of the par value at maturity. 

• Yield to maturity – is the internal rate of return 
earned by investor who buys the bond today at 
the market price, assuming that the bond will 
be held until maturity.   



Bond pricing   – coupon bonds   

•         – income from the ownership bonds at time i,  n – number of 

payments, YTM – yield to maturity,  P –  bond price 
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Bond pricing   – coupon bonds 

• Constant coupon rate,     C  – coupon payment, M – value at 

maturity or par value,  n – number of payments, YTM – yield 

to maturity,  P – bond price 
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Example 1 

Time to 

maturity 

Price of bond 
Premium Discount  

Percent of  

premium 

decline 

Percent of 

discount 

decline YTM= 9% YTM=10% YTM=11% 

4 103.24 100 96.90 3.24 3.10 – – 

3 102.53 100 97.56 2.53 2.44 21.87% 21.23% 

2 101.76 100 98.29 1.76 1.71 30.51% 29.92% 

1 100.92 100 99.10 0.92 0.9 47.85% 47.39% 

Suppose a 4-year bond with the value at maturity of 100 PLN and a  

coupon rate of 10%.  
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Example 2 

• Suppose a 3-year bond with the value at maturity of 

100 PLN.  

Coupon rate 
Price of bond Percent of 

decrease YTM = 8% YTM = 12% 

10% 105.15 95.20 9.47% 

15% 118.04 107.21 9.18% 

0947.0
15.105

2.9515.105
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Example 3 
n=10 M=100 
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Example 4  

• Suppose a bond with the value at maturity of 100 PLN and a 

coupon rate of 10%.  

 
Time to maturity 

(in years) 

Price of bond Percent of 

decrease YTM = 8% YTM = 12% 

3 105.15 95.20 9.47% 

5 107.99 92.79 14.07% 



Example 5  
M=100, rc=5% 
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Example 6 

• Calculate the price of a bond with a par value of  100 PLN to 

be paid in two years (after and before the coupon payment), a 

coupon rate of 10%, and a required yield of  9%.  
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Example 7 

• Calculate the price of a bond with a par value of  100 PLN to 

be paid in two years and six months, a coupon rate of 10%, 

and a required yield of  8%. An annual coupon payment. 

2.5 1.5 0.5 0 

110 10 10 

     
28.109
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5.25.15.0
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Zero-coupon bonds 

• Zero-coupon or accrual bonds do not pay a 

coupon. Instead, these types of bonds are 

issued at a deep discount and pay the full face 

value at maturity.  

 



Fundamentals of bond valuation – bond price  

• Zero-coupon bond,     M  – value at maturity,  n – number of 

periods, r – interest rate,  P – bond price 
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Example 8 

• Calculate the price of a zero-coupon bond that 

is maturing in one and a half years, has a par 

value of 100 PLN and a required yield of 5%. 
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Perpetual bond – pricing  

• A bond with no maturity date. Issuers pay coupons forever. 

 

 

 

 

 

 

 

• C – coupon interest on bond, r – an expected yield for 

maximum term available  
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Duration of a financial asset that consists of fixed cash flows  

• The weighted average of the times until the fixed 

flows are received   
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The Macaulay duration 
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The Macaulay duration 

• The weighted average of the time of receipt of a 
bond’s fixed cash flow payments. 

• The balance point of a group of cash flows. 

• It helps to compare bonds with different time to 
maturity and different coupon rates. 

• The higher a bond’s coupon – the shorter the 
Macaulay duration. 

• The longer a bond’s maturity the greater its 
duration. 

mYTM
D

11
  m – a frequency of coupon n



The Macaulay duration 

• The higher the YTM – the shorter the 

Macaulay duration 

• Higher frequency of coupon payment – the 

shorter the Macaulay duration. 

• Zero-coupon bonds have durations equal to 

their maturities.   



Example 9 

• Suppose a 3-year bond  with a value at maturity of 

100 PLN, coupon rate of 5%, YTM of 10%. What is 

the Macaulay duration of the bond? 
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The modified Macaulay duration 

• The modified Macaulay duration measures the 

price sensitivity of a bond when there is a 

change in the yield to maturity  
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Example 10 

• Suppose a 3-year bond with the value at  maturity of 100 PLN, 

a coupon rate of 5% and the YTM of 10%. How much will the 

bond price change if the YTM increases by  1 percentage point 

(decreases by 1 percentage point). 
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Share evaluation models 

• Dividend discount model – method of estimating 
the value of a share stock as the present value of 
all expected future dividend payments. 

 

• Constant dividend model  

• Constant dividend growth rate model – Gordon 
model 

 

• Two-stage dividend growth model 

• Multistage dividend growth model 



Dividend discount model  
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Dividend discount model  
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Constant dividend model  
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Constant dividend growth rate model 

• Dividend will grow at a constant growth rate g. 
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Constant perpetual growth model 

• Model in which dividends grow forever at a 

constant rate g, and the growth rate g is strictly 

less than the discount rate r. 

rg 



Constant perpetual growth model 
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Example 11 

• Suppose the current dividend is 100 PLN. If the discount rate 

is 10%, what is the value of the stock? 

 

• Constant dividend discount model 

 

• Constant perpetual growth model (suppose dividends are 

projected to grow at  8% forever) 
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Two-stage dividend growth model 

• Dividend grow at a rate    during a first stage 

of growth lasting n years and thereafter grow 

at a rate        during a perpetual second stage of 

growth 
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Example 12 

• Suppose a firm has a current dividend of 100 PLN which is 

expected to grow at the rate of 8% for 3 years, and thereafter 

grow at the rate of 3%. With a discount rate of 10%, what is 

the value of stock? 
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Example 12 
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Example 13 

• Dividend is expected to grow at        for 4 years,  at 

             for 2 years, at          for 3 years, and thereafter at   
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