Financial Mathematics Lecture 7

Dr Wioletta Nowak

Fundamentals of bond valuation

- Bond - a loan between a borrower (issuer) and a lender (investor, creditor)
- The issuer promises to make regular interest payments to the investor at a specified rate (the coupon rate) on the amount it has borrowed (the face/par amount) until a specified date (the maturity date).
- Once the bond matures, the interest payments stop and the issuer is required to repay the face amount of the principal to the investor.

Fundamentals of bond valuation

- Bonds can be priced at a premium, discount, or at par.
- If the bond's price is higher than its par value, it will sell at a premium because its interest rate is higher than current prevailing rates.
- If the bond's price is lower than its par value, the bond will sell at a discount because its interest rate is lower than current prevailing interest rates.

Fundamentals of bond valuation

- Bond valuation is the determination of the fair price of a bond.
- The price of bond is the sum of the present values of all expected coupon payments plus the present value of the par value at maturity.
- Yield to maturity - is the internal rate of return earned by investor who buys the bond today at the market price, assuming that the bond will be held until maturity.

Bond pricing - coupon bonds

- C_{i} - income from the ownership bonds at time i, n - number of payments, $Y T M$ - yield to maturity, P - bond price

Bond pricing - coupon bonds

- Constant coupon rate, C - coupon payment, M - value at maturity or par value, n - number of payments, $Y T M$ - yield to maturity, P - bond price

$$
\begin{gathered}
P=\frac{C}{1+Y T M}+\frac{C}{(1+Y T M)^{2}}+\cdots+\frac{C+M}{(1+Y T M)^{n}} \\
P=\frac{C}{1+Y T M}\left(1+\frac{1}{1+Y T M}+\cdots+\frac{1}{(1+Y T M)^{n-1}}\right)+\frac{M}{(1+Y T M)^{n}} \\
P=C \cdot \frac{1-(1+Y T M)^{-n}}{Y T M}+\frac{M}{(1+Y T M)^{n}}
\end{gathered}
$$

Example 1

Suppose a 4 -year bond with the value at maturity of 100 PLN and a coupon rate of 10%.

Time to maturity	Price of bond			Premium	Discount	Percent of premium decline	Percent of discount decline
	YTM 9%	YTM $=10 \%$	YTM $=11 \%$			-	
4	103.24	100	96.90	3.24	3.10	-	-
3	102.53	100	97.56	2.53	2.44	21.87%	21.23%
2	101.76	100	98.29	1.76	1.71	30.51%	29.92%
1	100.92	100	99.10	0.92	0.9	47.85%	47.39%

$$
\frac{3.24-2.53}{3.24}=0.2187
$$

Example 2

- Suppose a 3-year bond with the value at maturity of 100 PLN.

Coupon rate	Price of bond		Percent of decrease
	$\mathrm{YTM}=8 \%$	$\mathrm{YTM}=12 \%$	
10%	105.15	95.20	9.18%
15%	118.04	107.21	

$$
\frac{105.15-95.2}{105.15}=0.0947
$$

Example 3

$$
\mathrm{n}=10 \mathrm{M}=100
$$

Example 4

- Suppose a bond with the value at maturity of 100 PLN and a coupon rate of 10%.

Time to maturity (in years)	Price of bond		Percent of decrease
	$\mathrm{YTM}=8 \%$	$\mathrm{YTM}=12 \%$	
3	105.15	95.20	14.07%
5	107.99	92.79	

Example 5
$\mathrm{M}=100, \mathrm{rc}=5 \%$

Example 6

- Calculate the price of a bond with a par value of 100 PLN to be paid in two years (after and before the coupon payment), a coupon rate of 10%, and a required yield of 9%.

$$
P=\frac{10}{1.09}+\frac{110}{(1.09)^{2}}=101.76
$$

$$
P=10+\frac{10}{1.09}+\frac{110}{(1.09)^{2}}=111.76
$$

Example 7

- Calculate the price of a bond with a par value of 100 PLN to be paid in two years and six months, a coupon rate of 10%, and a required yield of 8%. An annual coupon payment.

Zero-coupon bonds

- Zero-coupon or accrual bonds do not pay a coupon. Instead, these types of bonds are issued at a deep discount and pay the full face value at maturity.

Fundamentals of bond valuation - bond price

- Zero-coupon bond, M - value at maturity, n - number of periods, r - interest rate, P - bond price

Example 8

- Calculate the price of a zero-coupon bond that is maturing in one and a half years, has a par value of 100 PLN and a required yield of 5%.

$$
P=\frac{100}{(1+0.05)^{1.5}}=92.94
$$

Perpetual bond - pricing

- A bond with no maturity date. Issuers pay coupons forever.

$$
P=\frac{C}{1+r}+\frac{C}{(1+r)^{2}}+\frac{C}{(1+r)^{3}}+\cdots
$$

$$
P=\frac{C}{r}
$$

- C - coupon interest on bond, r - an expected yield for maximum term available

Duration of a financial asset that consists of fixed cash flows

- The weighted average of the times until the fixed flows are received

$$
D=w_{1} t_{1}+w_{2} t_{2}+\cdots+w_{n} t_{n}
$$

$$
w_{i}=\frac{P V_{i}}{P V}
$$

$$
P V=P V_{1}+P V_{2}+\cdots+P V_{n}
$$

$P V_{i}$ - the present value of the payment at time t_{i}

The Macaulay duration

$$
D=\frac{\sum_{k=1}^{n} \frac{k \cdot C_{k}}{(1+Y T M)^{k}}}{\sum_{k=1}^{n} \frac{C_{k}}{(1+Y T M)^{k}}}
$$

k - period in which a coupon is received

The Macaulay duration

- The weighted average of the time of receipt of a bond's fixed cash flow payments.
- The balance point of a group of cash flows.
- It helps to compare bonds with different time to maturity and different coupon rates.
- The higher a bond's coupon - the shorter the Macaulay duration.
- The longer a bond's maturity the greater its duration.

$$
n \rightarrow \infty \quad D \rightarrow \frac{1}{Y T M}+\frac{1}{m} \quad m-\text { a frequency of coupon }
$$

The Macaulay duration

- The higher the YTM - the shorter the Macaulay duration
- Higher frequency of coupon payment - the shorter the Macaulay duration.
- Zero-coupon bonds have durations equal to their maturities.

Example 9

- Suppose a 3-year bond with a value at maturity of 100 PLN, coupon rate of 5%, YTM of 10%. What is the Macaulay duration of the bond?

$$
D=\frac{\frac{1 \cdot 5}{1.1}+\frac{2 \cdot 5}{(1.1)^{2}}+\frac{3 \cdot 105}{(1.1)^{3}}}{\frac{5}{1.1}+\frac{5}{(1.1)^{2}}+\frac{105}{(1.1)^{3}}}=2.849
$$

The modified Macaulay duration

- The modified Macaulay duration measures the price sensitivity of a bond when there is a change in the yield to maturity
$\frac{\Delta P}{P}=-D \cdot \frac{\Delta Y T M}{1+Y T M}$

$$
D_{M}=\frac{D}{1+Y T M}
$$

$$
\frac{\Delta P}{P}=-D_{M} \cdot \Delta Y T M
$$

$$
D_{M}=\frac{D}{1+Y T M / m}
$$

m - a frequency of coupon

Example 10

- Suppose a 3-year bond with the value at maturity of 100 PLN, a coupon rate of 5% and the YTM of 10%. How much will the bond price change if the YTM increases by 1 percentage point (decreases by 1 percentage point).
$D=2.849 \quad D_{M}=\frac{2.849}{1.1}=2.59 \quad \frac{\Delta P}{P}=-D_{M} \cdot \Delta Y T M$
$\Delta Y T M=+1 \%$

$$
\Delta Y T M=-1 \%
$$

$\frac{\Delta P}{P}=-2.59 \%$

$$
\frac{\Delta P}{P}=+2.59 \%
$$

Share evaluation models

- Dividend discount model - method of estimating the value of a share stock as the present value of all expected future dividend payments.
- Constant dividend model
- Constant dividend growth rate model - Gordon model
- Two-stage dividend growth model
- Multistage dividend growth model

Dividend discount model

$$
\begin{gathered}
P=\frac{D_{1}}{1+r}+\frac{P_{1}}{1+r} \\
P_{1}=\frac{D_{2}}{1+r}+\frac{P_{2}}{1+r} \Rightarrow P=\frac{D_{1}}{1+r}+\frac{D_{1}+P_{1}}{(1+r)^{2}}+\frac{P_{2}}{(1+r)^{2}}
\end{gathered}
$$

Dividend discount model

$$
\begin{aligned}
P= & \frac{D_{1}}{1+r}+\frac{D_{2}}{(1+r)^{2}}+\frac{P_{2}}{(1+r)^{2}} \quad P_{2}=\frac{D_{3}}{1+r}+\frac{P_{3}}{1+r} \\
& P=\frac{D_{1}}{1+r}+\frac{D_{2}}{(1+r)^{2}}+\frac{D_{3}}{(1+r)^{3}}+\frac{P_{3}}{(1+r)^{3}} \\
P= & \sum_{k=1}^{n} \frac{D_{k}}{(1+r)^{k}}+\frac{P_{n}}{(1+r)^{n}} \\
& n \rightarrow \infty
\end{aligned} \quad P=\sum_{k=1}^{\infty} \frac{D_{k}}{(1+r)^{k}}, ~ l
$$

Constant dividend model

$$
P=\sum_{k=1}^{\infty} \frac{D_{k}}{(1+r)^{k}}
$$

$$
P=D \cdot \sum_{k=1}^{\infty} \frac{1}{(1+r)^{k}}
$$

$$
P=D \cdot \frac{\frac{1}{1+r}}{1-\frac{1}{1+r}}=\frac{D}{r}
$$

$$
P=\frac{D}{r}
$$

Constant dividend growth rate model

- Dividend will grow at a constant growth rate g.

$$
D_{k+1}=(1+g) \cdot D_{k}
$$

- For a known D_{1}

$$
\begin{gathered}
P=\frac{D_{1}}{1+r}+\frac{D_{1} \cdot(1+g)}{(1+r)^{2}}+\frac{D_{1} \cdot(1+g)^{2}}{(1+r)^{3}}+\cdots \\
P=D_{1} \cdot \sum_{k=1} \frac{(1+g)^{k-1}}{(1+r)^{k}}
\end{gathered}
$$

Constant perpetual growth model

- Model in which dividends grow forever at a constant rate g, and the growth rate g is strictly less than the discount rate r.

$$
g<r
$$

Constant perpetual growth model

$$
\begin{gathered}
P=D_{1} \cdot \sum_{k=1} \frac{(1+g)^{k-1}}{(1+r)^{k}} \\
\sum_{k=1} \frac{(1+g)^{k-1}}{(1+r)^{k}}=\frac{1}{1+r} \cdot \frac{1}{1-\frac{1+g}{1+r}}=\frac{1}{r-g} \quad r>g \\
P=\frac{D_{1}}{r-g} \\
P=\frac{D \cdot(1+g)}{r-g} \\
D_{1}=(1+g) \cdot D
\end{gathered}
$$

Example 11

- Suppose the current dividend is 100 PLN. If the discount rate is 10%, what is the value of the stock?
- Constant dividend discount model $P=\frac{D}{r}=\frac{100}{0.1}=1000$
- Constant perpetual growth model (suppose dividends are projected to grow at 8% forever)

$$
P=\frac{D \cdot(1+g)}{r-g}=\frac{100 \cdot(1+0.08)}{0.1-0.08}=\frac{108}{0.02}=5400
$$

Two-stage dividend growth model

- Dividend grow at a rate g_{1} during a first stage of growth lasting n years and thereafter grow at a rate g_{2} during a perpetual second stage of growth

$$
\left.\begin{array}{l}
\quad P=\frac{D_{1}}{1+r}+\cdots+\frac{D_{n}}{(1+r)^{n}}+\frac{P_{n}}{(1+r)^{n}} \\
D_{n}=\left(1+g_{1}\right) \cdot D_{n-1} \\
D_{n+1}=\left(1+g_{2}\right) \cdot D_{n}
\end{array} \quad P_{n}=\frac{D_{n+1}}{r-g_{2}}=\frac{D_{n} \cdot\left(1+g_{2}\right)}{r-g_{2}}\right)
$$

$$
\left(g_{1}>g_{2}\right)
$$

Example 12

- Suppose a firm has a current dividend of 100 PLN which is expected to grow at the rate of 8% for 3 years, and thereafter grow at the rate of 3%. With a discount rate of 10%, what is the value of stock?

$$
P=\frac{D_{1}}{1+r}+\frac{D_{2}}{(1+r)^{2}}+\frac{D_{3}}{(1+r)^{3}}+\frac{P_{3}}{(1+r)^{3}}
$$

$$
D_{1}=D \cdot\left(1+g_{1}\right)
$$

$$
D_{2}=D \cdot\left(1+g_{1}\right)^{2}
$$

$$
D_{3}=D \cdot\left(1+g_{1}\right)^{3}
$$

$$
\begin{aligned}
& P_{3}=\frac{D_{4}}{r-g_{2}}=\frac{D_{3} \cdot\left(1+g_{2}\right)}{r-g_{2}} \\
& P_{3}=\frac{D \cdot\left(1+g_{1}\right)^{3} \cdot\left(1+g_{2}\right)}{r-g_{2}}
\end{aligned}
$$

Example 12

$$
\begin{array}{ll}
D_{1}=100 \cdot(1+0.08)=108 & D_{2}=108 \cdot 1.08=116.64 \\
D_{3}=116.64 \cdot 1.08=125.97 & D_{4}=125.97 \cdot 1.03=129.75 \\
P_{3}=\frac{129.75}{0.1-0.03}=1853.58 &
\end{array}
$$

$$
P=\frac{108}{1.1}+\frac{116.64}{(1.1)^{2}}+\frac{125.97}{(1.1)^{3}}+\frac{1853.58}{(1.1)^{3}}=1681.84
$$

Example 13

- Dividend is expected to grow at g_{1} for 4 years, at g_{2} for 2 years, at g_{3} for 3 years, and thereafter at g_{4}

$$
P=\frac{D_{1}}{1+r}+\cdots+\frac{D_{9}}{(1+r)^{9}}+\frac{P_{9}}{(1+r)^{9}}
$$

$$
\begin{aligned}
& D_{1}=D \cdot\left(1+g_{1}\right) \\
& D_{2}=D_{1} \cdot\left(1+g_{1}\right) \\
& D_{3}=D_{2} \cdot\left(1+g_{1}\right) \\
& D_{4}=D_{3} \cdot\left(1+g_{1}\right)
\end{aligned}
$$

$$
\begin{gathered}
D_{5}=D_{4} \cdot\left(1+g_{2}\right) \\
D_{6}=D_{5} \cdot\left(1+g_{2}\right) \\
P_{9}=\frac{D_{10}}{r-g_{4}}=\frac{D_{9} \cdot\left(1+g_{4}\right)}{r-g_{4}}
\end{gathered}
$$

$$
\begin{aligned}
& D_{7}=D_{6} \cdot\left(1+g_{3}\right) \\
& D_{8}=D_{7} \cdot\left(1+g_{3}\right) \\
& D_{9}=D_{8} \cdot\left(1+g_{3}\right)
\end{aligned}
$$

