Financial Mathematics Lecture 8

Dr Wioletta Nowak

Example 1a - Loan Amortization Schedule

- An investor borrowed 1000 PLN. The loan was for 6 months at 24% annual interest (compound interest rate).
- Create a loan amortization schedule if since the fourth month the annual interest is 18%.

$$
\begin{array}{cl}
S=1000 & N=6 \quad r=\frac{0.24}{12}=0.02 \\
A=\frac{S \cdot r \cdot(1+r)^{N}}{(1+r)^{N}-1} & A=\frac{1000 \cdot 0.02 \cdot(1+0.02)^{6}}{(1+0.02)^{6}-1}=178.5 \\
S_{3}=514.8 & N=3
\end{array}
$$

n	S_{n-1}	T_{n}	Z_{n}	A_{n}	S_{n}
1	1000	158.5	20.0	178.5	841.5
2	841.5	161.7	16.8	178.5	679.8
3	679.8	164.9	13.6	178.5	514.8
4	514.8	169.1	7.7	176.8	345.8
5	345.8	171.6	5.2	176.8	174.2
6	174.2	174.2	2.6	176.8	0
Total		$\mathbf{1 0 0 0}$	$\mathbf{6 5 . 9}$	$\mathbf{1 0 6 5 . 9}$	

$\begin{array}{lllll}\begin{array}{l}\text { Previous } \\ \text { principal }\end{array} & \text { Principal } & \text { Interest } & \text { Total } & \text { Principal } \\ \text { balance } & & \text { payment } & \text { payment } & \text { balance }\end{array}$

Example 1b - Loan Amortization Schedule

- An investor borrowed 1000 PLN. The loan was for 6 months at 24% annual interest (compound interest rate).
- Create a loan amortization schedule if the investor pays additional 100 PLN with the third payment.

n	S_{n-1}	T_{n}	Z_{n}	A_{n}	S_{n}
1	1000	158.5	20.0	178.5	841.5
2	841.5	161.7	16.8	178.5	679.8
3	679.8	264.9	13.6	278.5	414.8
4	414.8	170.2	8.3	178.5	244.6
5	244.6	173.6	4.9	178.5	71.0
6	71.0	71.0	1.4	72.4	0.0
Total		$\mathbf{1 0 0 0}$	$\mathbf{6 5 . 0}$	$\mathbf{1 0 6 5 . 0}$	

Previous	Principal	Interest	Total	Principal
principal				
balance	payment	payment	payment	balance

Example 1c - Loan Amortization Schedule

- An investor borrowed 1000 PLN. The loan was for 6 months at 24% annual interest (compound interest rate).
- Create a loan amortization schedule if the investor doesn't pay the fourth payment. He pays it plus interest with the fifth payment.

n	S_{n-1}	T_{n}	Z_{n}	A_{n}	S_{n}
1	1000	158.5	20.0	178.5	841.5
2	841.5	161.7	16.8	178.5	679.8
3	679.8	164.9	13.6	178.5	514.8
4	514.8	-10.3	10.3	0	525.1
5	525.1	350.1	10.5	360.6	175.0
6	175.0	175.0	3.5	178.5	0
Total		$\mathbf{1 0 0 0}$	$\mathbf{7 4 . 7}$	$\mathbf{1 0 7 4 . 7}$	
Previous principal balance					Principal payment
Interest payment	Total payment	Principal balance			

Example 1d - Loan Amortization Schedule

- An investor borrowed 1000 PLN. The loan was for 6 months at 24% annual interest (compound interest rate).
- Create a loan amortization schedule if the first payment is postponed for two months.

n	S_{n-1}	T_{n}	Z_{n}	A_{n}	S_{n}
1	1040.4	164.9	20.8	185.7	875.5
2	875.5	168.2	17.5	185.7	707.2
3	707.2	171.6	14.1	185.7	535.6
4	535.6	175.0	10.7	185.7	360.6
5	360.6	178.5	7.2	185.7	182.1
6	182.1	182.1	3.6	185.7	0
Total		$\mathbf{1 0 4 0 . 4}$	$\mathbf{7 4 . 0}$	$\mathbf{1 1 1 4 . 4}$	
$\begin{array}{l}\text { Previous } \\ \text { principal } \\ \text { balance }\end{array}$					
Principal	Interest				
payment	Total				
payment					

balance\end{array}\right]\)

Example 1e - Loan Amortization Schedule

- An investor borrowed 1000 PLN. The loan was for 6 months at 24% annual interest (compound interest rate).
- Create a loan amortization schedule if the investor pays two payments, than he doesn't pay for 3 months. The investor begins to pay off the loan again in the sixth month paying three equal payments every two months. Since the third month the annual interest rate is 18%.

n	S_{n-1}	T_{n}	Z_{n}	A_{n}	S_{n}
1	1000	158.5	20.0	178.5	841.5
2	841.5	161.7	16.8	178.5	679.8
6	710.8	237.0	10.7	247.7	473.8
8	480.9	240.5	7.2	247.7	240.4
10	244.0	244.0	3.7	247.7	0
Total		$\mathbf{1 0 0 0}$	$\mathbf{5 8 . 4}$	$\mathbf{1 0 5 8 . 4}$	

Previous	Principal	Interest	Total	Principal
principal				
balance	payment	payment	payment	balance

$$
\begin{gathered}
S_{5}=679.8 \cdot(1.015)^{3}=710.8 \\
S_{5}=\frac{A_{6}}{1+r}+\frac{A_{8}}{(1+r)^{3}}+\frac{A_{10}}{(1+r)^{5}} \\
A_{6}=A_{8}=A_{10}=A \\
710.8=\frac{A}{1.015}+\frac{A}{(1.015)^{3}}+\frac{A}{(1.015)^{5}} \\
S_{7}=473.8 \cdot 1.015=480.9
\end{gathered}
$$

Example 2

- An investor borrowed 50 PLN. Find how many payments of 15 PLN should be made if the effective rate of interest is 10%.
- Solve the problem of non-integer number of payments.

$$
S=50 \quad A=15
$$

$$
\begin{aligned}
& S(1+r)^{N}=A \frac{(1+r)^{N}-1}{r} \\
& N=\frac{\ln 1.5}{\ln 1.1}=4.25
\end{aligned}
$$

Previous	Principal	Interest	Total	Principal
principal balance	payment	payment	payment	balance

n	S_{n-1}	T_{n}	Z_{n}	A_{n}	S_{n}
1	50	10	5	15	40
2	40	11	4	15	29
3	29	12.1	2.9	15	16.9
4	16.9	13.3	1.7	15	$\mathbf{3 . 5 9}$
	3.59	3.59	0.36	3.95	

Additional payment

Enlargement of one of the payment

$$
\begin{array}{ll}
A_{1}=A_{2}=A_{3}=15 & A_{4}=18.59 \\
A_{2}=A_{3}=A_{4}=15 & A_{1}=17.70 \\
A_{1}=A_{3}=A_{4}=15 & A_{2}=17.97 \\
A_{1}=A_{2}=A_{4}=15 & A_{3}=18.26
\end{array}
$$

New payments

$$
N=4 \quad A=\frac{S \cdot r \cdot(1+r)^{N}}{(1+r)^{N}-1}
$$

$$
A=15.77
$$

Treasury bills

- Treasury bills are discounted short-term debt securities with maturities of up to one year.
- Treasury bills are sold at a discount off their nominal value.
- Treasury bills represent an important instrument of governmental fiscal policy and the central bank's monetary policy.
- The nominal value is payable to the final holder upon redemption on maturity.
- Nominal/face value - 10000 PLN in Poland.
- Maturity - the date the bill is redeemed and the investor is paid the face value amount.
- Regular Treasury bill series are issued weekly (13, 26 or 52 weeks in Poland).

Bill valuation methods

- $\boldsymbol{P}_{1}-\quad$ purchase price (at which investor can buy)
- $\boldsymbol{P}_{2}-$ nominal/face value (principal)
- $t-$ number o days from purchase to maturity

Bill valuation methods

- The method applied to determine the value of bills depends on whether the bill price is based on the rate of return (r) or the rate of discount (d).
- Bond prices are quoted relative to a 100 PLN face/nominal value.

Treasury bills - the rate of return

Treasury bills - the rate of return

$$
r=\frac{P_{2}-P_{1}}{P_{1}} \cdot \frac{360}{t}
$$

Treasury bills - the rate of return for the holding period

$$
\begin{aligned}
& \stackrel{t_{s}}{P_{1}} \cdot P_{s} \\
& r_{s}=\frac{P_{s}-P_{1}}{P_{1}} \cdot \frac{360}{t_{s}}
\end{aligned}
$$

Treasury bills - the discount rate

$$
\begin{gathered}
\overbrace{P_{1}}^{t} \\
d=\frac{P_{2}-P_{1}}{P_{2}} \cdot \frac{360}{t}
\end{gathered}
$$

Treasury bills - price of the Treasury bills

- The price per 100 PLN principal (bills quoted on the basis of the rate of return).

$$
P=\frac{360}{r \cdot t+360} \cdot 100
$$

- The price per 100 PLN principal (bills quoted on the basis of the discount rate)

$$
P=\left(1-\frac{d \cdot t}{360}\right) \cdot 100
$$

Treasury bills

$$
\frac{360}{r \cdot t+360} \cdot 100=\left(1-\frac{d \cdot t}{360}\right) \cdot 100
$$

$$
r=\frac{d}{1-d \cdot \frac{t}{360}}
$$

$$
d=\frac{r}{1+r \cdot \frac{t}{360}}
$$

The rate of return for the known discount rate

The discount rate for the known rate of return

Example 1 - Treasury bills

Investor buys Treasury bills at the primary market with maturity 26 weeks. The nominal value of bills is 1.5 million PLN. The investors pays 97.9005 per a 100 PLN.

$$
9790.05 \cdot 150=1468508
$$

- The rate of return

$$
r=\frac{100-97.9005}{97.9005} \cdot \frac{360}{182}=0.04242
$$

- The discount rate

$$
d=\frac{100-97.9005}{100} \cdot \frac{360}{182}=0.04153
$$

Example 2 - Treasury bills

- Assuming that the Treasury bills have been issued at a rate of return of 9% per 60 days, calculate the appropriate discount rate.

$$
d=\frac{r}{1+r \cdot \frac{t}{360}}=\frac{0.09}{1+0.09 \cdot \frac{60}{360}}=0.08867
$$

A certificate of deposit - CD

- A certificate of deposit is a savings certificate with a fixed maturity date, specified fixed interest rate issued by commercial banks.
- A CD restricts access to the funds until the maturity date of the investment.

A certificate of deposit

Face value Price at maturity

$$
P=F V \cdot\left(1+r_{k} \cdot \frac{t}{360}\right)
$$

$\boldsymbol{r}_{\boldsymbol{k}}$ - interest rate

A certificate of deposit

Number of days
from purchase to maturity

$$
F V \cdot\left(1+r_{k} \cdot \frac{t}{360}\right)=P_{p} \cdot\left(1+r_{p} \cdot \frac{t_{p}}{360}\right)
$$

$$
P_{p}=\frac{F V \cdot\left(1+r_{k} \cdot \frac{t}{360}\right)}{\left(1+r_{p} \cdot \frac{t_{p}}{360}\right)}
$$

$$
P_{p}=\frac{100 \cdot\left(1+r_{k} \cdot \frac{t}{360}\right)}{\left(1+r_{p} \cdot \frac{t_{p}}{360}\right)}
$$

Purchase price

$C D$ - the rate of return for the holding period

Example 3 - CD

- Investor buys CD at the primary market with maturity 13 weeks. The nominal value of CD is 1 million PLN. The rate of return is 20%.
- Calculate the price at maturity

$$
P=1000000 \cdot\left(1+0.2 \cdot \frac{91}{360}\right)=1050556.556
$$

Example $3-\mathrm{CD}$

- After 31 days the investor sells CD at a 19.75% rate of return.

$$
\begin{aligned}
& \underset{000}{\stackrel{31 \text { days }}{\leftrightarrows}} \stackrel{60 \text { days }}{\rightleftarrows} \stackrel{1017076.8}{\rightleftarrows} \\
& \begin{array}{l}
P_{s}=\frac{1000000 \cdot\left(1+0.2 \cdot \frac{91}{360}\right)}{\left(1+0.1975 \cdot \frac{60}{360}\right)}=1017076.8 \\
\text { Interest for } 100 \mathrm{PLN} \\
\begin{array}{l}
101.7077-\text { dirty price } \\
101.7077-1.7222=99.9855-\text { clean price }
\end{array} 100 \cdot \frac{0.2 \cdot 31}{360}=1.722 \\
\begin{array}{l}
1017076.8-17222.2=999 \\
\hline
\end{array} \\
\hline 1454.6
\end{array}
\end{aligned}
$$

Example 3 - CD

$$
\begin{aligned}
& P_{s}=1000000 \cdot\left(1+0.2 \cdot \frac{31}{360}\right)=1017222.2 \\
& r_{s}=\frac{1050556.56-1017222.2}{1017222.2} \cdot \frac{360}{60}=0.1966
\end{aligned}
$$

