Mathematical Economics MME2/2 - 2019/2020 (sample of the final exam)

1. A consumer has a utility function $u\left(x_{1}, x_{2}\right)=x_{1}^{\frac{1}{2}}+x_{2}^{\frac{1}{2}}$ and the budget constraint is $p_{1} x_{1}+p_{2} x_{2}=I, \quad p_{1}, p_{2}, I>0$. What are the Marshallian demand functions?
2. Solve the expenditure minimization problem

$$
\begin{array}{ll}
\min _{x_{1}, x_{2}} & p_{1} x_{1}+p_{2} x_{2} \\
& u=x_{1}^{\frac{1}{3}} x_{2}^{\frac{1}{3}}
\end{array} \quad p_{1}, p_{2}, u>0 .
$$

3. A monopoly has a production function $y\left(x_{1}, x_{2}\right)=x_{1}^{\frac{1}{2}} x_{2}^{\frac{1}{3}}$. Solve the profit maximization problem and cost minimization problem in long run if $p(y)=6 y^{-\frac{1}{2}}, \quad v_{1}=2$ and $v_{2}=3$.
4. For the technologies $y=\min \left\{\frac{1}{4} x_{1}, 2 x_{2}\right\}$ and $y=\frac{x_{1}}{2}+x_{2}$ compute:
a) the total cost and the cost of production of 1 unit of output,
b) the marginal and average cost.

Assume that prices of inputs are $(4,6)$.
5. Suppose that we have two firms that face linear demand curve $p=200-\frac{1}{2}\left(y_{1}+y_{2}\right)$ and their cost functions are $c_{1}\left(y_{1}\right)=\frac{1}{2} y_{1}^{2}, c_{2}\left(y_{2}\right)=10 y_{2}$, respectively.
a) Compute the Cournot equilibrium amount of output for each firm and firms' profits.
b) If firm 2 behaves as a follower and firm 1 behaves as a leader, compute the Stackelberg equilibrium amount of output for each firm and firms' profits.

