Mathematical Economics (2019/2020)

Exercises 2

1. The utility function is given by
A) $u\left(x_{1}, x_{2}\right)=x_{1}^{2}+x_{2}^{2}$;
B) $u\left(x_{1}, x_{2}\right)=x_{1}^{\frac{1}{3}}+x_{2}^{\frac{1}{3}}$;
C) $u\left(x_{1}, x_{2}\right)=x_{1}^{n}+x_{2}^{n}$;
D) $u\left(x_{1}, x_{2}\right)=\frac{1}{2} \ln x_{1}+\frac{1}{4} \ln x_{2}$;
E) $u\left(x_{1}, x_{2}\right)=x_{1}^{\frac{1}{n}}+x_{2}^{\frac{1}{n}}, \quad n \neq 0$.

Check the following relationships
a) $\varphi(p, I)=f(p, v(p, I))$ - the Marshallian demand at income I is the same as the Hicksian demand at utility $v=v(p, I)$
b) $\quad f(p, u)=\varphi(p, e(p, u))$ - the Hicksian demand at utility u is the same as the Marshallian demand at income $e(p, u)$
c) $e(p, v(p, I))=I$ - the minimum expenditure to reach utility $u=v(p, I)$ is I
d) $v(p, e(p, u))=u$ - the maximum utility from income $e(p, u)$ is u
e) $\frac{\partial \varphi_{i}(p, I)}{\partial p_{j}}=\frac{\partial f_{i}(p, u)}{\partial p_{j}}-\frac{\partial \varphi_{i}(p, I)}{\partial I} \cdot \varphi_{j}(p, I), \quad i, j=1,2 \quad i \neq j-$ the Slutsky equation

